透明手機技術發(fā)展出現(xiàn)重大突破。斯坦福大學(Stanford University)近來全力發(fā)展以硅為基礎的納米線(Nanowire)技術;納米線極為纖細,超越人眼可偵測范圍,不僅能儲存大量電能,催生新世代高能量納米電池,亦可組成透明電極網(wǎng)絡,實現(xiàn)手機電池、屏幕元件透明化設計。
2013-04-23 09:24:29
1546 經(jīng)工業(yè)和信息化部測試認證,中國“可見光通信系統(tǒng)關鍵技術研究”近日獲得重大突破,實時通信速率提高至50Gbps(比特每秒),相當于0.2秒即可完成一部高清電影的下載。
2015-12-18 08:20:46
2647 華為中央研究院瓦特實驗室在第57屆日本電池大會上,宣布在鋰離子電池領域?qū)崿F(xiàn)重大研究突破,推出業(yè)界首個高溫長壽命石墨烯基鋰離子電池。
2016-12-04 17:36:45
4611 富士通半導體此次重點展示了其最新推出的在微光條件下也可以實現(xiàn)97%轉換效率的光環(huán)境發(fā)電PMIC,并且此電源管理IC還可以實現(xiàn)低至0.35V的超低電壓啟動。這些技術上的突破使得以往處于概念階段的“無電池”、“半永久”應用場景即將成為現(xiàn)實,并且為綠色節(jié)能應用提供了更廣闊的想象空間。
2013-03-22 09:17:25
9957 
這一重大突破表明,光學電路可以執(zhí)行基于電子技術的人工神經(jīng)網(wǎng)絡的關鍵功能,并且可以更便宜、更快和更節(jié)能的方式來執(zhí)行諸如語音或圖像識別等復雜任務。
2019-03-05 13:26:18
5338 2020年11月25日在中國廣州,華南師范大學、深圳市國華光電科技有限公司聯(lián)合研制的彩色視頻電子紙顯示器取得重大突破。此項成果基于周國富教授和Alex Henzen教授領導的團隊研發(fā)的彩色視頻電潤濕電子紙關鍵技術。
2020-11-26 11:08:47
2142 著名材料學家崔屹與美國前能源部部長、諾貝爾物理獎得主朱棣文組成的研究團隊,最近在金屬鋰電極的實際應用研發(fā)方面取得重大突破。金屬鋰具有極高的理論比容量和理想的負極電位。以金屬鋰為負極的二次電池,具有高工
2016-12-30 19:16:12
導讀:2018年Q4全球智能音箱出貨量暴增95%!阿里中國第一?! 〗?,市場調(diào)研公司Strategy Analytics公布了2018年第四季度全球智能音箱市場統(tǒng)計報告。報告顯示,去年第四季度
2019-02-25 09:27:15
安全綜合保障技術的“四個創(chuàng)新”,為重載鐵路運能和效率提升提供了成套解決方案。七中國能源裝備領域獲重大突破今年我國首臺套天然氣長輸管道國產(chǎn)30兆瓦級燃驅(qū)壓縮機組成功鑒定驗收。該機組性能完全滿足我國天然氣
2021-07-06 10:02:35
以下關于鋰電池各蓄電池的標準內(nèi)容是我司工程師花了一兩小時整理出來的,優(yōu)耐檢測帶大家來了解一下:1高空模擬 鋰原電池和蓄電池在運輸中的安全要求 GB 21966-2008 IEC 62281:2016
2020-12-25 15:29:13
。錳離子電池、鈉離子電池、鋰-硫電池的工作原理都與鋰離子電池在某種程度上類似,但它們在能量密度(決定了電池有多小,或多輕)和成本上有擊敗鋰離子電池的潛力。譬如,由于硫的價格低廉,相比于當今的鋰離子電池
2018-10-09 10:28:23
研究進展: 鋰空氣電池使能量密度達到現(xiàn)有任何電池的三倍,研究顯示金屬催化物在提高電池效率上起到重要作用?! 「苯淌赮angShao-Horn表示,許多研究團隊如今正致力于鋰-空氣電池的研究,但目前
2016-01-13 16:04:23
鋰鐵電池的內(nèi)部結構如圖1所示。左邊是橄欖石結構的LiFePO4作為電池的正極,由鋁箔與電池正極連接,中間是聚合物的隔膜,它把正極與負極隔開,但鋰離子Li+可以通過而電子 e-不能通過,右邊是由碳(石墨)組成的電池負極,由銅箔與電池的負極連接。
2019-09-30 09:10:42
鋰錳電池在生產(chǎn)過程中使用了低沸點的有機物溶劑,其中有一種叫乙二醇二甲醚(DME)的物質(zhì),其閃點溫度較低。在充電過程中,如果電池密封不好,電池發(fā)熱造成該物質(zhì)的揮發(fā),遇到電火花將有可能發(fā)生燃燒,產(chǎn)生危險。
2019-11-06 09:10:46
近日,《自然》雜志上發(fā)表了關于谷歌 DeepMind 使用 AI 診斷眼疾實現(xiàn)重大突破的文章。結果顯示,在 997 例患者的掃描測試中,DeepMind 的算法優(yōu)于英國莫菲爾眼科醫(yī)院
2018-08-15 11:01:51
范圍-55oC至+85oC鋰金屬含量約 2.5克U.L. 組件識別,MH 121933.6 V伯亞硫酰氯鋰(Li-SOCl2)長期存儲和/或使用后,電壓恢復很快高能量密度低自放電率梭芯結構密封玻璃到
2020-11-18 11:28:42
鋰鐵電池是近幾年才興起的新一代干電池,其具有容量大、體積小、重量輕、大電流放電、低溫性能優(yōu)異的特點。相較于堿性電池而言,鋰鐵電池不易漏液,因為電解液完全吸附在隔膜上,電池內(nèi)部不存在流動性液體,不會
2018-11-27 13:21:49
才恢復(與Part 7所介紹的鋰亞硫酸氯電池有類似的效應)。以下是鋰二氧化硫電池的基本規(guī)格:˙能量比(specific energy):約250Wh/kg;˙能量密度(Energy density
2014-08-18 10:30:58
。以下是鋰亞硫酸氯電池的基本規(guī)格:˙能量比(specific energy):500 Wh/kg;˙能量密度(Energy density):1,200 Wh/L;˙功率比(specific power
2014-08-18 10:20:42
與鋰二氧化錳 (LiMnO2) 等電池化學物質(zhì)相比,鋰亞硫酰氯 (LiSOCI2) 電池可實現(xiàn)更高的能量密度和更出色的每瓦成本比,因此普遍用于智能流量計。但 LiSOCl2 電池有一個缺點,即對峰值
2022-11-04 07:14:17
產(chǎn)品磷酸鐵鋰電池的全名是磷酸鐵鋰鋰離子電池,簡稱為磷酸鐵鋰電池。磷酸鐵鋰電池相較于傳統(tǒng)用的膠體電池擁有更大的能量密度,更小的體積重量;并且磷酸鐵鋰電池擁有2000次以上的電量循環(huán),遠遠超過膠體電池的電量
2022-03-11 15:59:46
蘋果產(chǎn)品整體大換代以MAX3232EUE+T及新產(chǎn)品預料中的超高銷售額導致蘋果供應商銷售額暴增。托皮卡資本市場公司分析師布萊恩懷特(Brian White)在本周四的一份報告中透露,蘋果的關鍵
2012-11-09 15:39:49
什么是SOI技術?在實現(xiàn)CAN收發(fā)器EMC優(yōu)化方面有哪些重大突破?
2021-05-10 06:42:44
提高鋰電池系統(tǒng)的能量密度能讓鋰電池更好的工作,發(fā)揮它的性能,那么怎么提高鋰電池系統(tǒng)能量密度的呢?
2021-03-11 07:19:55
顆粒,在正極側接觸,這是難度非常大的。從大家預期的優(yōu)點上,如果使用了金屬鋰,現(xiàn)在容易燃燒和爆炸的液態(tài)電解質(zhì),另外使用壽命等等都會延長,模塊配置等都是大家期望的,包括金屬鋰、鋰硫和鋰空氣電池,這些路線在
2017-01-17 09:37:14
據(jù)多家媒體報道,小家電行業(yè)隨著中國疫情結束,產(chǎn)能逐漸恢復。在國內(nèi)內(nèi)循環(huán)與國外外循環(huán)的雙循環(huán)作用下,小家電銷售量暴增,優(yōu)秀的企業(yè)銷售漲幅達到了600%,出現(xiàn)了“訂單多到不敢接”的盛況。小家電
2020-11-11 16:57:31
的現(xiàn)象。他們所研制出的鋰空氣電池具有較高的能量密度,并且能夠循環(huán)充電2000次以上。該電池在理論上的能源使用效率超過90%?! ]有哪位化學家或工程師會說,鋰離子電池是完美的。隨著電動汽車的越來越普及
2016-01-11 16:15:06
淺談新能源汽車電源之鋰硫電池利與弊 一直以來,新能源汽車用動力電池能量密度小和造價高的問題一直困擾著國內(nèi)外新能源汽車制造企業(yè),為了破解這一難題,近來動力電池生產(chǎn)企業(yè)紛紛開始研發(fā)
2018-07-13 07:54:40
隨著阿法狗大戰(zhàn)李世石,人工智能引發(fā)越來越多的關注。百度總裁張亞勤28日表示,百度長期堅持技術創(chuàng)新,2015年研發(fā)投入超過100億元,目前在人工智能領域已有重大突破。 張亞勤在天津夏季達沃斯論壇
2016-07-01 15:22:41
磷酸鋰鐵電池廣泛應用于電動車、油電混合車、電動自行車、電動工具機、太陽能LED路燈等。
2019-10-22 09:01:28
`華爾街日報發(fā)布文章稱,科技產(chǎn)品下一個重大突破將在芯片堆疊領域出現(xiàn)。Apple Watch采用了先進的的3D芯片堆疊封裝技術作為幾乎所有日常電子產(chǎn)品最基礎的一個組件,微芯片正出現(xiàn)一種很有意思的現(xiàn)象
2017-11-23 08:51:12
(Li2O)或者過氧化鋰(Li2O2),并留在陰極。鋰空氣電池的開路電壓為2.91 V?! ?b class="flag-6" style="color: red">鋰空氣電池比鋰離子電池具有更高的能量密度,因為其陰極(以多孔碳為主)很輕,且氧氣從環(huán)境中獲取而不用保存在電池
2016-01-11 16:27:12
結構緊湊的鋰(Li)電池充電器設計方案
2009-03-26 22:02:01
。 科學家認為,鋰空氣電池的性能是鋰離子電池的10倍,可以提供與汽油同等的能量。鋰空氣電池從空氣中吸收氧氣充電,因此這種電池可以更小、更輕。全球不少實驗室都在研究這種技術,但如果沒有重大突破,要想實現(xiàn)商用可能還需要10年。所以希望科學家能快點在研究上有所突破,讓鋰空氣電池早點被運用上。
2016-01-12 10:51:49
很多人會誤以為鋰離子電池就是鋰電池,實際上兩者是有區(qū)別的。那么鋰離子電池和鋰電池的區(qū)別在哪里呢? 鋰電池的正極材料是二氧化錳或亞硫酰氯,負極是鋰。舉例來講,以前照相機里用的扣式電池就屬于鋰電池
2015-12-28 15:10:38
預期的那樣,每個正極都顯示出來自溶劑分解的碳質(zhì)物質(zhì)以及來自FSI陰離子分解的含氮、硫和氟物質(zhì)。有趣的是,對于與鋰金屬配對的正極,特別是氮和硫的正極,一些鹽分解峰更為明顯。雖然這可能表明NC|Li電池
2022-08-30 08:15:15
新型電池、新型能源不停的進步發(fā)展,作為老前輩的鋰電池也不甘落后,最近日本又研發(fā)出鋰離子電池的最新正極材料-摻錳鈮酸鋰,據(jù)說能量密度有望達6倍,我們快來看看這種正極材料到底是什么,為什么這么厲害吧
2016-01-19 14:06:07
詳情見附件鋰離子電池(LIBs)由于具備高能量密度、高工作電壓和無記憶效應等特點成為廣泛應用的電化學儲能系統(tǒng)之一,其常用的石墨負極由于容量相對較低(372 mAh g-1)而難以完全滿足日益提升
2021-04-20 16:15:15
系列為下一代移動設備領先的調(diào)制解調(diào)器技術做了補充,提供業(yè)界領先的移動解決方案,支持千兆LTE,4x4 MIMO和LTE Advanced等突破性技術,這些技術對于5G的演進和2019年商用至關重要。
2018-01-30 09:04:16
天合光能在開發(fā)單結晶矽電池技術方面有重大突破
天合光能(Trina Solar)宣布,在開發(fā)單結晶矽電池技術方面有重大突破,配合公司
2010-02-11 08:29:33
765 IBM宣布芯片實現(xiàn)重大突破 可建百萬萬億次電腦
網(wǎng)易科技訊 北京時間3月4日消息 據(jù)《自然》雜志報道,IBM的科學家當日宣布,他們用微型硅電路取代銅線實現(xiàn)了芯片間
2010-03-04 08:50:13
462 IBM宣布半導體技術重大突破 耗能少傳輸快
IBM研究人員宣布,在半導體傳輸技術上有了重大突破,可大幅提高傳輸速度,并同時減少能源損耗。
此項技術目
2010-03-08 09:34:36
555 (Intel)宣布,在微處理器上實現(xiàn)了50多年來的最重大突破,成功開發(fā)出世界首個三維結構晶體管
2011-05-06 08:19:13
654 “第三代”光伏發(fā)電技術,也就是綠色光伏發(fā)電技術,特點是綠色、高效、價廉和壽命長。中國第三代光伏發(fā)電技術又取得了重大突破。
2011-11-30 09:34:38
977 最近,由華南理工大學和廣州新視界光電科技有限公司聯(lián)合自主研發(fā)的AMOLED顯示屏技術上取得重大突破,在國內(nèi)率先成功開發(fā)出基于金屬氧化物TFT背板技術的全彩色AMOLED顯示屏,并實現(xiàn)
2012-10-12 09:54:03
906 日前,據(jù)有關媒體從中國科學院獲悉,可取代“晶硅”原材料的“銅銦鎵硒”薄膜太陽能電池核心技術取得重大突破,趕超國際水平,所制備的銅銦鎵硒(CIGS)太陽能電池效率達到18.
2012-12-11 10:27:01
2458 現(xiàn)在,華為中央研究院瓦特實驗室宣布,他們在鋰離子電池領域?qū)崿F(xiàn)重大研究突破,推出業(yè)界首個高溫長壽命石墨烯基鋰離子電池,而這個新型耐高溫技術可以將鋰離子電池上限使用溫度提高10℃,使用壽命是普通鋰離子電池的2倍。
2016-12-01 15:41:04
1186 近日,華為中央研究院瓦特實驗室在第57屆日本電池大會上宣布,在鋰離子電池領域?qū)崿F(xiàn)重大研究突破,推出業(yè)界首個高溫長壽命石墨烯基鋰離子電池。實驗結果顯示,以石墨烯為基礎的新型耐高溫技術可以將鋰離子電池上限使用溫度提高10℃,使用壽命是普通鋰離子電池的2倍。
2016-12-01 15:56:25
1298 最近,豐田汽車在電動汽車領域動作頻頻,先是一改口徑要進軍純電動汽車,隨后又成立了公司內(nèi)部的電動“四人幫”。11月24日,又宣布在鋰離子電池領域有重大突破“breakthrough”,儼然成為
2016-12-01 17:17:24
1021 
華為中央研究院瓦特實驗室在第57屆日本電池大會上宣布在鋰離子電池領域?qū)崿F(xiàn)重大研究突破,推出業(yè)界首個高溫長壽命石墨烯基鋰離子電池。華為瓦特實驗室首席科學家李陽興博士表示,石墨烯基高溫鋰離子電池技術突破主要來自三個方面:
2016-12-02 11:42:40
953 12月1日,華為中央研究院瓦特實驗室在第57屆日本電池大會上,宣布在鋰離子電池領域?qū)崿F(xiàn)重大研究突破,推出業(yè)界首個高溫長壽命石墨烯基鋰離子電池。
2016-12-05 13:15:24
1277 現(xiàn)在,華為中央研究院瓦特實驗室宣布,他們在鋰離子電池領域?qū)崿F(xiàn)重大研究突破,推出業(yè)界首個高溫長壽命石墨烯基鋰離子電池,而這個新型耐高溫技術可以將鋰離子電池上限使用溫度提高10℃,使用壽命是普通鋰離子電池的2倍。
2016-12-05 14:00:13
801 近日,一則“華為在石墨烯基電池上取得重大突破”的消息于社交網(wǎng)絡瘋傳,瞬間點燃了朋友圈的愛國熱情,眾多以“愛國”為噱頭的激情刷屏,又一次成就了華為“國貨”的品牌內(nèi)核。
2016-12-08 08:37:19
1351 華為最近發(fā)布的石墨烯基鋰離子電池取得重大突破的新聞刷爆炸朋友圈,引外一系列解讀,并且誤讀頗多。華為向記者表示,該款電池不能稱為石墨烯電池,并且該研究只是有重大突破,目前沒有商用。就讓小編帶領大家
2016-12-12 09:35:03
3213 華為最近發(fā)布的石墨烯基鋰離子電池取得重大突破的新聞刷爆炸朋友圈,引外一系列解讀,并且誤讀頗多。華為向記者表示,該款電池不能稱為石墨烯電池,并且該研究只是有重大突破,目前沒有商用。
2016-12-12 14:39:20
3404 透明手機技術發(fā)展出現(xiàn)重大突破。斯坦福大學(Stanford University)近來全力發(fā)展以硅為基礎的納米線(Nanowire)技術;納米線極為纖細,超越人眼可偵測范圍,不僅能儲存大量電能,催生
2017-12-07 12:20:01
284 上的講話。任正非稱,不能忽視低端產(chǎn)品的價值。他表示低端產(chǎn)品是用來保衛(wèi)高端產(chǎn)品盈利的,因此很重要。此前2017年10月,任正非在一次內(nèi)部講話中也曾強調(diào)過低端機的重要性。 2017年,華為消費者終端業(yè)務取得重大突破。
2018-01-10 14:24:01
2969 
兩只克隆猴誕生!邂逅中中和華華,這是世界上第一批利用克隆羊多利技術成功克隆的猴子。兩只獼猴出生不到10周,目前非常健康。這也是世界生命科學的重大突破。
2018-06-14 07:50:00
2331 德國Plastic Logic已經(jīng)在其柔性電子墨水屏的屏幕密度上取得了突破,比原有的像素密度高出了 155% 。該公司已經(jīng)展示了像素密度為 500ppi 的樣機來證明這一能力。
2018-05-04 10:40:00
2817 近日,我國在高鎳正極材料及動力電池單體開發(fā)方面獲重大突破,天津力神電池股份有限公司研發(fā)出一種NCA三元高比能量動力鋰電池,能量密度超過300wh/kg,引發(fā)業(yè)界關注。根據(jù)國家工信部《汽車產(chǎn)業(yè)中長期
2018-06-11 10:17:00
2954 新一代傳送網(wǎng)標準G.mtn是由中國移動主導的面向5G承載的具有原創(chuàng)性的技術體系,獲得了諾基亞、華為、中興、烽火、愛立信、博通、思博倫等全球重要產(chǎn)業(yè)伙伴的廣泛支持,是傳送網(wǎng)技術領域的一次重大突破。
2018-10-26 08:28:19
2316 10 月 29 日,云從科技宣布在語音識別技術上取得重大突破,該技術在全球最大的開源語音識別數(shù)據(jù)集 Librispeech 上刷新了世界紀錄,錯詞率低至 2.97%,指標提升了 25%,超過微軟、谷歌、阿里、約翰霍普金斯大學等企業(yè)及高校 。
2018-11-01 15:13:40
3604 據(jù)悉,近日,漢能砷化鎵(GaAs)技術再獲重大突破。據(jù)世界三大再生能源研究機構之一的德國弗勞恩霍夫太陽能系統(tǒng)研究所(Fraunhofer ISE)認證,漢能阿爾塔砷化鎵薄膜單結電池轉換效率達到29.1%,再次刷新世界紀錄。
2018-11-19 15:31:47
7041 近期,江門高新區(qū)在智能制造領域取得多項重大突破,轄區(qū)6家企業(yè)的6個項目共獲得市級先進裝備制造業(yè)專項資金(機器人應用)317.08萬元,本次江門市獲獎補企業(yè)共10家,高新區(qū)獲獎補企業(yè)數(shù)及獲獎補金額均是全市第一。
2018-12-19 15:45:49
3521 據(jù)悉,臺灣工業(yè)技術研究院(ITRI)下屬的電子與光電子系統(tǒng)研究實驗室(EOSRL)日前宣布,在Micro LED芯片巨量轉移技術上實現(xiàn)了重大突破。
2019-05-24 15:29:25
2213 就在我們的鄰國日本,向來都是研究機器人的強國,隨著科技日益的進步,日本在研究機器人方面也取得了重大突破,在近日也是推出了一款“女性”機器人,在上線僅僅一小時就全部售罄了,看來機器人十分受人們的關注。
2019-06-15 09:42:03
3907 小“艾”課堂開課啦 | TWS耳機低功耗重大突破及充電盒設計新潮流
2019-07-03 18:24:13
2767 中國已經(jīng)發(fā)射了一顆量子加密衛(wèi)星,如果它被證明是真正的“防黑客技術”,它可以證明是網(wǎng)絡安全的重大突破。
2020-03-27 16:19:11
1691 近日,我國在基于量子中繼的量子通信網(wǎng)絡技術方面取得重大突破,在國際上首次實現(xiàn)相距50公里光纖的存儲器間的量子糾纏。
2020-04-03 17:58:44
3052 西北工業(yè)大學柔性電子研究院(柔性電子前沿科學中心)黃維院士和南京郵電大學信息材料與納米技術研究院解令海教授團隊在有機納米聚合物領域取得重大突破。
2020-04-12 14:53:02
2581 日前,快商通在民營醫(yī)療行業(yè)的知識圖譜項目「醫(yī)療知識圖譜工程平臺」獲得重大突破,11年耕耘產(chǎn)生質(zhì)變。
2021-03-16 16:31:22
1043 鋰金屬電池能量密度500Wh/kg的重大突破。500Wh/kg是一個標桿性的電池能量密度指標,而目前這家企業(yè)的450Wh/kg鋰金屬電池也已進入商業(yè)化量產(chǎn)階段。
2020-06-17 15:07:26
2928 從京東方官方獲悉,近日,京東方集團中央研究院關于高分辨率、全彩量子點發(fā)光二極管(QLED)的研究取得重大突破,實現(xiàn)了分辨率500ppi、色域114%NTSC的全彩QLED器件,技術指標全球領先。相關研究論文在國際權威學術期刊Nano Research上發(fā)表。
2020-07-17 17:22:33
2698 在硅基CMOS毫米波技術路線取得重大突破,在大規(guī)模相控陣天線集成度方面國際領先;成果在5G/6G毫米波和寬帶衛(wèi)星通信等領域具有廣闊的應用前景,在該領域“卡脖子”技術上取得關鍵突破,已在相關應用部門得以成功推廣應用。
2020-08-31 14:21:36
3369 近期,香港市場研究機構MobiusTrend發(fā)布了一份有關“特斯拉的AR云平臺和WIMI的無人駕駛全息全息AI視覺SDK”的研究報告。報告顯示,無人駕駛汽車可以實現(xiàn)自主控制并主動避開障礙物。盡管這聽起來令人難以置信,但這項技術現(xiàn)已取得了重大突破。
2020-09-08 15:07:01
826 據(jù)臺灣經(jīng)濟日報報道,臺積電2nm工藝取得重大突破,研發(fā)進度超前,業(yè)界看好其2023年下半年風險試產(chǎn)良率就可以達到90%。供應鏈透露,有別于3nm和5nm采用鰭式場效應晶體管(FinFET),臺積電的2nm工藝改用全新的多橋通道場效電晶體(MBCFET)架構。
2020-09-23 09:45:38
1849 
談及 OLED,有人時常會冒出一句:LCD 永不為奴。不過就在最近,OLED 技術再次獲得了新突破:PPI 像素密度達到 10000!
2020-10-27 09:33:03
1979 
據(jù)中國臺灣媒體報道稱,臺積電(TSMC) 在實現(xiàn)2nm工藝方面取得了重大突破,該工藝可以生產(chǎn)數(shù)十億個晶體管,可能會突破摩爾定律放慢的局限。
2020-11-24 16:54:06
1145 
年下半年進行風險性試產(chǎn),2024年就能步入量產(chǎn)階段。 臺積電2nm工藝重大突破 臺積電還表示,2nm的突破將再次拉大與競爭對手的差距,同時延續(xù)摩爾定律,繼續(xù)挺進1nm工藝的研發(fā)。預計,蘋果、高通、NVIDIA、AMD等客戶都有望率先采納其2nm工藝,此前關于摩爾定律已
2020-11-26 10:48:09
2546 
2020年11月25日在中國廣州,華南師范大學、深圳市國華光電科技有限公司聯(lián)合研制的彩色視頻電子紙顯示器取得重大突破。此項成果基于周國富教授和AlexHenzen教授領導的團隊研發(fā)的彩色視頻電潤濕電子紙關鍵技術。
2020-11-26 11:49:04
2477 鎂電池自2000年問世以來一直被認為有極大的潛力超越鋰離子電池,其原因主要是低價,高體積容量,并且無枝晶生長行為的鎂金屬可以直接用作電池負極。但是這項技術的發(fā)展一直非常緩慢。鎂二價離子和電解液與正極
2020-12-02 13:36:45
9328 國產(chǎn)氮化鎵快充研發(fā)取得重大突破,三大核心芯片實現(xiàn)自主可控,性能達到國際先進水準。氮化鎵(gallium nitride,GaN)是下一代半導體材料,其運行速度比舊式傳統(tǒng)硅(Si)技術加快了二十
2020-12-18 10:26:52
3386 日前,記者獲悉,吉林奧來德光電材料股份有限公司在封裝材料方面取得重大突破,產(chǎn)品綜合性能已經(jīng)達到國外同等水平,其中部分物理性能和穩(wěn)定性表現(xiàn)突出,在水、氧阻隔方面具有良好的表現(xiàn)。
2020-12-21 11:44:33
976 Borexino合作項目在《自然》上發(fā)文,報告了中微子物理學中一個里程碑式的重大突破。他們首次探測到了來自碳-氮-氧(CNO)核聚變循環(huán)產(chǎn)生的中微子。測量這些中微子,將有助于人們更清晰地了解太陽內(nèi)核
2021-01-12 17:37:24
1902 對此,李克強回應稱,多年來,我國在科技創(chuàng)新領域有一些重大突破。在應用創(chuàng)新領域發(fā)展得也很快,但是在基礎研究領域的確存在著不足。要建設科技強國,提升科技創(chuàng)新能力,必須打牢基礎研究和應用基礎研究這個根基。打多深的基才能蓋多高的樓,不能急功近利,要一步一個腳印地走。
2021-03-14 11:31:47
4705 由于在實驗中的一次意外發(fā)現(xiàn),發(fā)展緩慢的有機太陽能電池產(chǎn)業(yè)終于迎來了轉機,其能量轉換效率取得了重大突破。這一突破來自于電子在富勒烯分子(俗稱“巴克球”)層中移動的過程。密歇根大學的科學家們在試驗有機
2022-02-24 17:24:03
3319 在2021 IEEE國際電子器件會議(IEDM)上,IBM和三星聯(lián)合宣布,他們在半導體設計方面取得一項重大突破。
2022-03-16 09:56:02
338 “中國天眼”取得重大突破 由中國科學院國家天文臺等單位科研人員組成的中國脈沖星測時陣列研究團隊,日前利用“中國天眼”FAST探測到納赫茲引力波存在的關鍵性證據(jù),這是納赫茲引力波搜尋的一個重要突破
2023-06-29 15:57:37
869 關注微軟科技視頻號 了解更多科技前沿資訊 點亮在看,給BUG點好看 點擊閱讀原文,了解關于微軟那些事兒 原文標題:「重大突破」微軟量子超級計算機路線圖公布! 文章出處:【微信公眾號:微軟科技】歡迎添加關注!文章轉載請注明出處。
2023-07-07 00:10:02
265 
華為芯片迎重大突破:目前華為的麒麟系列芯片已經(jīng)成為世界上最強大的移動芯片之一,被廣泛應用于華為自家的旗艦手機以及平板電腦等設備上。 華為一直是全球領先的芯片設計和制造企業(yè)之一,近年來通過自主研發(fā)
2023-09-06 11:14:56
3349 據(jù)麥姆斯咨詢報道,近日,英國圣安德魯斯大學(University of St. Andrews)的科學家表示,他們在開發(fā)緊湊型有機半導體激光器技術的數(shù)十年挑戰(zhàn)中取得了“重大突破(significant breakthrough)”。
2023-10-30 15:23:00
162 
中國鎳基超導體機理研究重大突破 超導體這門前沿科技具有重要的科學和應用價值,超導材料在所有涉及電和磁的領域都有用武之地,包括電子學、生物醫(yī)學、科學工程、交通運輸、電力等領域。 據(jù)央視新聞報道,此前
2023-11-03 16:00:08
526 由于高能量密度和低成本,鋰-硫(Li-S)電池被認為是先進能源存儲系統(tǒng)的有希望的候選者。盡管在抑制鋰硫化物長期存在的“穿梭效應”方面付出了巨大努力,但在納米尺度上理解鋰硫化物的界面反應仍然難以捉摸。
2024-01-17 11:16:38
309 
我國在光存儲領域獲重大突破 或?qū)㈤_啟綠色海量光子存儲新紀元 據(jù)新華社的報道,中國科學院上海光學精密機械研究所與上海理工大學等合作,在超大容量超分辨三維光存儲研究中取得突破性進展。可以說是“超級光盤
2024-02-22 18:28:45
1335
評論