路由器,路由器原理,路由器協(xié)議,路由器算法
路由器,路由器原理,路由器協(xié)議,路由器算法
路由器:連接因特網(wǎng)中各局域網(wǎng)、廣域網(wǎng)的設備,它會根據(jù)信道的情況自動選擇和設定路由,以最佳路徑,按前后順序發(fā)送信號的設備。 路由器英文名Router,路由器是互聯(lián)網(wǎng)絡的樞紐、"交通警察"。目前路由器已經(jīng)廣泛應用于各行各業(yè),各種不同檔次的產(chǎn)品已經(jīng)成為實現(xiàn)各種骨干網(wǎng)內(nèi)部連接、骨干網(wǎng)間互聯(lián)和骨干網(wǎng)與互聯(lián)網(wǎng)互聯(lián)互通業(yè)務的主力軍。
近十年來,隨著計算機網(wǎng)絡規(guī)模的不斷擴大,大型互聯(lián)網(wǎng)絡(如Internet)的迅猛發(fā)展,路由技術在網(wǎng)絡技術中已逐漸成為關鍵部分,路由器也隨之成為最重要的網(wǎng)絡設備。用戶的需求推動著路由技術的發(fā)展和路由器的普及,人們已經(jīng)不滿足于僅在本地網(wǎng)絡上共享信息,而希望最大限度地利用全球各個地區(qū)、各種類型的網(wǎng)絡資源。而在目前的情況下,任何一個有一定規(guī)模的計算機網(wǎng)絡(如企業(yè)網(wǎng)、校園網(wǎng)、智能大廈等),無論采用的是快速以大網(wǎng)技術、FDDI技術,還是ATM技術,都離不開路由器,否則就無法正常運作和管理。
1 網(wǎng)絡互連
把自己的網(wǎng)絡同其它的網(wǎng)絡互連起來,從網(wǎng)絡中獲取更多的信息和向網(wǎng)絡發(fā)布自己的消息,是網(wǎng)絡互連的最主要的動力。網(wǎng)絡的互連有多種方式,其中使用最多的是網(wǎng)橋互連和路由器互連。
1.1 網(wǎng)橋互連的網(wǎng)絡
網(wǎng)橋工作在OSI模型中的第二層,即鏈路層。完成數(shù)據(jù)幀(frame)的轉發(fā),主要目的是在連接的網(wǎng)絡間提供透明的通信。網(wǎng)橋的轉發(fā)是依據(jù)數(shù)據(jù)幀中的源地址和目的地址來判斷一個幀是否應轉發(fā)和轉發(fā)到哪個端口。幀中的地址稱為“MAC”地址或“硬件”地址,一般就是網(wǎng)卡所帶的地址。
網(wǎng)橋的作用是把兩個或多個網(wǎng)絡互連起來,提供透明的通信。網(wǎng)絡上的設備看不到網(wǎng)橋的存在,設備之間的通信就如同在一個網(wǎng)上一樣方便。由于網(wǎng)橋是在數(shù)據(jù)幀上進行轉發(fā)的,因此只能連接相同或相似的網(wǎng)絡(相同或相似結構的數(shù)據(jù)幀),如以太網(wǎng)之間、以太網(wǎng)與令牌環(huán)(token ring)之間的互連,對于不同類型的網(wǎng)絡(數(shù)據(jù)幀結構不同),如以太網(wǎng)與X.25之間,網(wǎng)橋就無能為力了。
網(wǎng)橋擴大了網(wǎng)絡的規(guī)模,提高了網(wǎng)絡的性能,給網(wǎng)絡應用帶來了方便,在以前的網(wǎng)絡中,網(wǎng)橋的應用較為廣泛。但網(wǎng)橋互連也帶來了不少問題:一個是廣播風暴,網(wǎng)橋不阻擋網(wǎng)絡中廣播消息,當網(wǎng)絡的規(guī)模較大時(幾個網(wǎng)橋,多個以太網(wǎng)段),有可能引起廣播風暴(broadcasting storm),導致整個網(wǎng)絡全被廣播信息充滿,直至完全癱瘓。第二個問題是,當與外部網(wǎng)絡互連時,網(wǎng)橋會把內(nèi)部和外部網(wǎng)絡合二為一,成為一個網(wǎng),雙方都自動向對方完全開放自己的網(wǎng)絡資源。這種互連方式在與外部網(wǎng)絡互連時顯然是難以接受的。問題的主要根源是網(wǎng)橋只是最大限度地把網(wǎng)絡溝通,而不管傳送的信息是什么。
1.2 路由器互連網(wǎng)絡
路由器互連與網(wǎng)絡的協(xié)議有關,我們討論限于TCP/IP網(wǎng)絡的情況。
路由器工作在OSI模型中的第三層,即網(wǎng)絡層。路由器利用網(wǎng)絡層定義的“邏輯”上的網(wǎng)絡地址(即IP地址)來區(qū)別不同的網(wǎng)絡,實現(xiàn)網(wǎng)絡的互連和隔離,保持各個網(wǎng)絡的獨立性。路由器不轉發(fā)廣播消息,而把廣播消息限制在各自的網(wǎng)絡內(nèi)部。發(fā)送到其他網(wǎng)絡的數(shù)據(jù)茵先被送到路由器,再由路由器轉發(fā)出去。
IP路由器只轉發(fā)IP分組,把其余的部分擋在網(wǎng)內(nèi)(包括廣播),從而保持各個網(wǎng)絡具有相對的獨立性,這樣可以組成具有許多網(wǎng)絡(子網(wǎng))互連的大型的網(wǎng)絡。由于是在網(wǎng)絡層的互連,路由器可方便地連接不同類型的網(wǎng)絡,只要網(wǎng)絡層運行的是IP協(xié)議,通過路由器就可互連起來。
網(wǎng)絡中的設備用它們的網(wǎng)絡地址(TCP/IP網(wǎng)絡中為IP地址)互相通信。IP地址是與硬件地址無關的“邏輯”地址。路由器只根據(jù)IP地址來轉發(fā)數(shù)據(jù)。IP地址的結構有兩部分,一部分定義網(wǎng)絡號,另一部分定義網(wǎng)絡內(nèi)的主機號。目前,在Internet網(wǎng)絡中采用子網(wǎng)掩碼來確定IP地址中網(wǎng)絡地址和主機地址。子網(wǎng)掩碼與IP地址一樣也是32bit,并且兩者是一一對應的,并規(guī)定,子網(wǎng)掩碼中數(shù)字為“1”所對應的IP地址中的部分為網(wǎng)絡號,為“0”所對應的則為主機號。網(wǎng)絡號和主機號合起來,才構成一個完整的IP地址。同一個網(wǎng)絡中的主機IP地址,其網(wǎng)絡號必須是相同的,這個網(wǎng)絡稱為IP子網(wǎng)。
通信只能在具有相同網(wǎng)絡號的IP地址之間進行,要與其它IP子網(wǎng)的主機進行通信,則必須經(jīng)過同一網(wǎng)絡上的某個路由器或網(wǎng)關(gateway)出去。不同網(wǎng)絡號的IP地址不能直接通信,即使它們接在一起,也不能通信。
路由器有多個端口,用于連接多個IP子網(wǎng)。每個端口的IP地址的網(wǎng)絡號要求與所連接的IP子網(wǎng)的網(wǎng)絡號相同。不同的端口為不同的網(wǎng)絡號,對應不同的IP子網(wǎng),這樣才能使各子網(wǎng)中的主機通過自己子網(wǎng)的IP地址把要求出去的IP分組送到路由器上。
2 路由原理
當IP子網(wǎng)中的一臺主機發(fā)送IP分組給同一IP子網(wǎng)的另一臺主機時,它將直接把IP分組送到網(wǎng)絡上,對方就能收到。而要送給不同IP于網(wǎng)上的主機時,它要選擇一個能到達目的子網(wǎng)上的路由器,把IP分組送給該路由器,由路由器負責把IP分組送到目的地。如果沒有找到這樣的路由器,主機就把IP分組送給一個稱為“缺省網(wǎng)關(default gateway)”的路由器上。“缺省網(wǎng)關”是每臺主機上的一個配置參數(shù),它是接在同一個網(wǎng)絡上的某個路由器端口的IP地址。
路由器轉發(fā)IP分組時,只根據(jù)IP分組目的IP地址的網(wǎng)絡號部分,選擇合適的端口,把IP分組送出去。同主機一樣,路由器也要判定端口所接的是否是目的子網(wǎng),如果是,就直接把分組通過端口送到網(wǎng)絡上,否則,也要選擇下一個路由器來傳送分組。路由器也有它的缺省網(wǎng)關,用來傳送不知道往哪兒送的IP分組。這樣,通過路由器把知道如何傳送的IP分組正確轉發(fā)出去,不知道的IP分組送給“缺省網(wǎng)關”路由器,這樣一級級地傳送,IP分組最終將送到目的地,送不到目的地的IP分組則被網(wǎng)絡丟棄了。
目前TCP/IP網(wǎng)絡,全部是通過路由器互連起來的,Internet就是成千上萬個IP子網(wǎng)通過路由器互連起來的國際性網(wǎng)絡。這種網(wǎng)絡稱為以路由器為基礎的網(wǎng)絡(router based network),形成了以路由器為節(jié)點的“網(wǎng)間網(wǎng)”。在“網(wǎng)間網(wǎng)”中,路由器不僅負責對IP分組的轉發(fā),還要負責與別的路由器進行聯(lián)絡,共同確定“網(wǎng)間網(wǎng)”的路由選擇和維護路由表。
路由動作包括兩項基本內(nèi)容:尋徑和轉發(fā)。尋徑即判定到達目的地的最佳路徑,由路由選擇算法來實現(xiàn)。由于涉及到不同的路由選擇協(xié)議和路由選擇算法,要相對復雜一些。為了判定最佳路徑,路由選擇算法必須啟動并維護包含路由信息的路由表,其中路由信息依賴于所用的路由選擇算法而不盡相同。路由選擇算法將收集到的不同信息填入路由表中,根據(jù)路由表可將目的網(wǎng)絡與下一站(nexthop)的關系告訴路由器。路由器間互通信息進行路由更新,更新維護路由表使之正確反映網(wǎng)絡的拓撲變化,并由路由器根據(jù)量度來決定最佳路徑。這就是路由選擇協(xié)議(routing protocol),例如路由信息協(xié)議(RIP)、開放式最短路徑優(yōu)先協(xié)議(OSPF)和邊界網(wǎng)關協(xié)議(BGP)等。
轉發(fā)即沿尋徑好的最佳路徑傳送信息分組。路由器首先在路由表中查找,判明是否知道如何將分組發(fā)送到下一個站點(路由器或主機),如果路由器不知道如何發(fā)送分組,通常將該分組丟棄;否則就根據(jù)路由表的相應表項將分組發(fā)送到下一個站點,如果目的網(wǎng)絡直接與路由器相連,路由器就把分組直接送到相應的端口上。這就是路由轉發(fā)協(xié)議(routed protocol)。
路由轉發(fā)協(xié)議和路由選擇協(xié)議是相互配合又相互獨立的概念,前者使用后者維護的路由表,同時后者要利用前者提供的功能來發(fā)布路由協(xié)議數(shù)據(jù)分組。下文中提到的路由協(xié)議,除非特別說明,都是指路由選擇協(xié)議,這也是普遍的習慣。
3 路由協(xié)議
典型的路由選擇方式有兩種:靜態(tài)路由和動態(tài)路由。
靜態(tài)路由是在路由器中設置的固定的路由表。除非網(wǎng)絡管理員干預,否則靜態(tài)路由不會發(fā)生變化。由于靜態(tài)路由不能對網(wǎng)絡的改變作出反映,一般用于網(wǎng)絡規(guī)模不大、拓撲結構固定的網(wǎng)絡中。靜態(tài)路由的優(yōu)點是簡單、高效、可靠。在所有的路由中,靜態(tài)路由優(yōu)先級最高。當動態(tài)路由與靜態(tài)路由發(fā)生沖突時,以靜態(tài)路由為準。
動態(tài)路由是網(wǎng)絡中的路由器之間相互通信,傳遞路由信息,利用收到的路由信息更新路由器表的過程。它能實時地適應網(wǎng)絡結構的變化。如果路由更新信息表明發(fā)生了網(wǎng)絡變化,路由選擇軟件就會重新計算路由,并發(fā)出新的路由更新信息。這些信息通過各個網(wǎng)絡,引起各路由器重新啟動其路由算法,并更新各自的路由表以動態(tài)地反映網(wǎng)絡拓撲變化。動態(tài)路由適用于網(wǎng)絡規(guī)模大、網(wǎng)絡拓撲復雜的網(wǎng)絡。當然,各種動態(tài)路由協(xié)議會不同程度地占用網(wǎng)絡帶寬和CPU資源。
靜態(tài)路由和動態(tài)路由有各自的特點和適用范圍,因此在網(wǎng)絡中動態(tài)路由通常作為靜態(tài)路由的補充。當一個分組在路由器中進行尋徑時,路由器首先查找靜態(tài)路由,如果查到則根據(jù)相應的靜態(tài)路由轉發(fā)分組;否則再查找動態(tài)路由。
根據(jù)是否在一個自治域內(nèi)部使用,動態(tài)路由協(xié)議分為內(nèi)部網(wǎng)關協(xié)議(IGP)和外部網(wǎng)關協(xié)議(EGP)。這里的自治域指一個具有統(tǒng)一管理機構、統(tǒng)一路由策略的網(wǎng)絡。自治域內(nèi)部采用的路由選擇協(xié)議稱為內(nèi)部網(wǎng)關協(xié)議,常用的有RIP、OSPF;外部網(wǎng)關協(xié)議主要用于多個自治域之間的路由選擇,常用的是BGP和BGP-4。下面分別進行簡要介紹。
3.1 RIP路由協(xié)議
RIP協(xié)議最初是為Xerox網(wǎng)絡系統(tǒng)的Xerox parc通用協(xié)議而設計的,是Internet中常用的路由協(xié)議。RIP采用距離向量算法,即路由器根據(jù)距離選擇路由,所以也稱為距離向量協(xié)議。路由器收集所有可到達目的地的不同路徑,并且保存有關到達每個目的地的最少站點數(shù)的路徑信息,除到達目的地的最佳路徑外,任何其它信息均予以丟棄。同時路由器也把所收集的路由信息用RIP協(xié)議通知相鄰的其它路由器。這樣,正確的路由信息逐漸擴散到了全網(wǎng)。
RIP使用非常廣泛,它簡單、可靠,便于配置。但是RIP只適用于小型的同構網(wǎng)絡,因為它允許的最大站點數(shù)為15,任何超過15個站點的目的地均被標記為不可達。而且RIP每隔30s一次的路由信息廣播也是造成網(wǎng)絡的廣播風暴的重要原因之一。
3.2 OSPF路由協(xié)議
80年代中期,RIP已不能適應大規(guī)模異構網(wǎng)絡的互連,0SPF隨之產(chǎn)生。它是網(wǎng)間工程任務組織(1ETF)的內(nèi)部網(wǎng)關協(xié)議工作組為IP網(wǎng)絡而開發(fā)的一種路由協(xié)議。
0SPF是一種基于鏈路狀態(tài)的路由協(xié)議,需要每個路由器向其同一管理域的所有其它路由器發(fā)送鏈路狀態(tài)廣播信息。在OSPF的鏈路狀態(tài)廣播中包括所有接口信息、所有的量度和其它一些變量。利用0SPF的路由器首先必須收集有關的鏈路狀態(tài)信息,并根據(jù)一定的算法計算出到每個節(jié)點的最短路徑。而基于距離向量的路由協(xié)議僅向其鄰接路由器發(fā)送有關路由更新信息。
與RIP不同,OSPF將一個自治域再劃分為區(qū),相應地即有兩種類型的路由選擇方式:當源和目的地在同一區(qū)時,采用區(qū)內(nèi)路由選擇;當源和目的地在不同區(qū)時,則采用區(qū)間路由選擇。這就大大減少了網(wǎng)絡開銷,并增加了網(wǎng)絡的穩(wěn)定性。當一個區(qū)內(nèi)的路由器出了故障時并不影響自治域內(nèi)其它區(qū)路由器的正常工作,這也給網(wǎng)絡的管理、維護帶來方便。
3.3 BGP和BGP-4路由協(xié)議
BGP是為TCP/IP互聯(lián)網(wǎng)設計的外部網(wǎng)關協(xié)議,用于多個自治域之間。它既不是基于純粹的鏈路狀態(tài)算法,也不是基于純粹的距離向量算法。它的主要功能是與其它自治域的BGP交換網(wǎng)絡可達信息。各個自治域可以運行不同的內(nèi)部網(wǎng)關協(xié)議。BGP更新信息包括網(wǎng)絡號/自治域路徑的成對信息。自治域路徑包括到達某個特定網(wǎng)絡須經(jīng)過的自治域串,這些更新信息通過TCP傳送出去,以保證傳輸?shù)目煽啃浴?
為了滿足Internet日益擴大的需要,BGP還在不斷地發(fā)展。在最新的BGp4中,還可以將相似路由合并為一條路由。
3.4 路由表項的優(yōu)先問題
在一個路由器中,可同時配置靜態(tài)路由和一種或多種動態(tài)路由。它們各自維護的路由表都提供給轉發(fā)程序,但這些路由表的表項間可能會發(fā)生沖突。這種沖突可通過配置各路由表的優(yōu)先級來解決。通常靜態(tài)路由具有默認的最高優(yōu)先級,當其它路由表表項與它矛盾時,均按靜態(tài)路由轉發(fā)。
4 路由算法
路由算法在路由協(xié)議中起著至關重要的作用,采用何種算法往往決定了最終的尋徑結果,因此選擇路由算法一定要仔細。通常需要綜合考慮以下幾個設計目標:
——(1)最優(yōu)化:指路由算法選擇最佳路徑的能力。
——(2)簡潔性:算法設計簡潔,利用最少的軟件和開銷,提供最有效的功能。
——(3)堅固性:路由算法處于非正常或不可預料的環(huán)境時,如硬件故障、負載過高或操作失誤時,都能正確運行。由于路由器分布在網(wǎng)絡聯(lián)接點上,所以在它們出故障時會產(chǎn)生嚴重后果。最好的路由器算法通常能經(jīng)受時間的考驗,并在各種網(wǎng)絡環(huán)境下被證實是可靠的。
——(4)快速收斂:收斂是在最佳路徑的判斷上所有路由器達到一致的過程。當某個網(wǎng)絡事件引起路由可用或不可用時,路由器就發(fā)出更新信息。路由更新信息遍及整個網(wǎng)絡,引發(fā)重新計算最佳路徑,最終達到所有路由器一致公認的最佳路徑。收斂慢的路由算法會造成路徑循環(huán)或網(wǎng)絡中斷。
——(5)靈活性:路由算法可以快速、準確地適應各種網(wǎng)絡環(huán)境。例如,某個網(wǎng)段發(fā)生故障,路由算法要能很快發(fā)現(xiàn)故障,并為使用該網(wǎng)段的所有路由選擇另一條最佳路徑。
路由算法按照種類可分為以下幾種:靜態(tài)和動態(tài)、單路和多路、平等和分級、源路由和透明路由、域內(nèi)和域間、鏈路狀態(tài)和距離向量。前面幾種的特點與字面意思基本一致,下面著重介紹鏈路狀態(tài)和距離向量算法。
鏈路狀態(tài)算法(也稱最短路徑算法)發(fā)送路由信息到互聯(lián)網(wǎng)上所有的結點,然而對于每個路由器,僅發(fā)送它的路由表中描述了其自身鏈路狀態(tài)的那一部分。距離向量算法(也稱為Bellman-Ford算法)則要求每個路由器發(fā)送其路由表全部或部分信息,但僅發(fā)送到鄰近結點上。從本質(zhì)上來說,鏈路狀態(tài)算法將少量更新信息發(fā)送至網(wǎng)絡各處,而距離向量算法發(fā)送大量更新信息至鄰接路由器。
由于鏈路狀態(tài)算法收斂更快,因此它在一定程度上比距離向量算法更不易產(chǎn)生路由循環(huán)。但另一方面,鏈路狀態(tài)算法要求比距離向量算法有更強的CPU能力和更多的內(nèi)存空間,因此鏈路狀態(tài)算法將會在實現(xiàn)時顯得更昂貴一些。除了這些區(qū)別,兩種算法在大多數(shù)環(huán)境下都能很好地運行。
最后需要指出的是,路由算法使用了許多種不同的度量標準去決定最佳路徑。復雜的路由算法可能采用多種度量來選擇路由,通過一定的加權運算,將它們合并為單個的復合度量、再填入路由表中,作為尋徑的標準。通常所使用的度量有:路徑長度、可靠性、時延、帶寬、負載、通信成本等。
5 新一代路由器
由于多媒體等應用在網(wǎng)絡中的發(fā)展,以及ATM、快速以太網(wǎng)等新技術的不斷采用,網(wǎng)絡的帶寬與速率飛速提高,傳統(tǒng)的路由器已不能滿足人們對路由器的性能要求。因為傳統(tǒng)路由器的分組轉發(fā)的設計與實現(xiàn)均基于軟件,在轉發(fā)過程中對分組的處理要經(jīng)過許多環(huán)節(jié),轉發(fā)過程復雜,使得分組轉發(fā)的速率較慢。另外,由于路由器是網(wǎng)絡互連的關鍵設備,是網(wǎng)絡與其它網(wǎng)絡進行通信的一個“關口”,對其安全性有很高的要求,因此路由器中各種附加的安全措施增加了CPU的負擔,這樣就使得路由器成為整個互聯(lián)網(wǎng)上的“瓶頸”。
傳統(tǒng)的路由器在轉發(fā)每一個分組時,都要進行一系列的復雜操作,包括路由查找、訪問控制表匹配、地址解析、優(yōu)先級管理以及其它的附加操作。這一系列的操作大大影響了路由器的性能與效率,降低了分組轉發(fā)速率和轉發(fā)的吞吐量,增加了CPU的負擔。而經(jīng)過路由器的前后分組間的相關性很大,具有相同目的地址和源地址的分組往往連續(xù)到達,這為分組的快速轉發(fā)提供了實現(xiàn)的可能與依據(jù)。新一代路由器,如IP Switch、Tag Switch等,就是采用這一設計思想用硬件來實現(xiàn)快速轉發(fā),大大提高了路由器的性能與效率。
新一代路由器使用轉發(fā)緩存來簡化分組的轉發(fā)操作。在快速轉發(fā)過程中,只需對一組具有相同目的地址和源地址的分組的前幾個分組進行傳統(tǒng)的路由轉發(fā)處理,并把成功轉發(fā)的分組的目的地址、源地址和下一網(wǎng)關地址(下一路由器地址)放人轉發(fā)緩存中。當其后的分組要進行轉發(fā)時,茵先查看轉發(fā)緩存,如果該分組的目的地址和源地址與轉發(fā)緩存中的匹配,則直接根據(jù)轉發(fā)緩存中的下一網(wǎng)關地址進行轉發(fā),而無須經(jīng)過傳統(tǒng)的復雜操作,大大減輕了路由器的負擔,達到了提高路由器吞吐量的目標。
基本概念
所謂路由就是指通過相互連接的網(wǎng)絡把信息從源地點移動到目標地點的活動。一般來說,在路由過程中,信息至少會經(jīng)過一個或多個中間節(jié)點。通常,人們會把路由和交換進行對比,這主要是因為在普通用戶看來兩者所實現(xiàn)的功能是完全一樣的。其實,路由和交換之間的主要區(qū)別就是交換發(fā)生在OSI參考模型的第二層(數(shù)據(jù)鏈路層),而路由發(fā)生在第三層,即網(wǎng)絡層。這一區(qū)別決定了路由和交換在移動信息的過程中需要使用不同的控制信息,所以兩者實現(xiàn)各自功能的方式是不同的。
早在40多年前間就已經(jīng)出現(xiàn)了對路由技術的討論,但是直到80年代路由技術才逐漸進入商業(yè)化的應用。路由技術之所以在問世之初沒有被廣泛使用主要是因為80年代之前的網(wǎng)絡結構都非常簡單,路由技術沒有用武之地。直到最近十幾年,大規(guī)模的互聯(lián)網(wǎng)絡才逐漸流行起來,為路由技術的發(fā)展提供了良好的基礎和平臺。
路由器是互聯(lián)網(wǎng)的主要節(jié)點設備。路由器通過路由決定數(shù)據(jù)的轉發(fā)。轉發(fā)策略稱為路由選擇(routing),這也是路由器名稱的由來(router,轉發(fā)者)。作為不同網(wǎng)絡之間互相連接的樞紐,路由器系統(tǒng)構成了基于 TCP/IP 的國際互聯(lián)網(wǎng)絡 Internet 的主體脈絡,也可以說,路由器構成了 Internet 的骨架。它的處理速度是網(wǎng)絡通信的主要瓶頸之一,它的可靠性則直接影響著網(wǎng)絡互連的質(zhì)量。因此,在園區(qū)網(wǎng)、地區(qū)網(wǎng)、乃至整個 Internet 研究領域中,路由器技術始終處于核心地位,其發(fā)展歷程和方向,成為整個 Internet 研究的一個縮影。在當前我國網(wǎng)絡基礎建設和信息建設方興未艾之際,探討路由器在互連網(wǎng)絡中的作用、地位及其發(fā)展方向,對于國內(nèi)的網(wǎng)絡技術研究、網(wǎng)絡建設,以及明確網(wǎng)絡市場上對于路由器和網(wǎng)絡互連的各種似是而非的概念,都有重要的意義。
原理
路由器(Router)是用于連接多個邏輯上分開的網(wǎng)絡,所謂邏輯網(wǎng)絡是代表一個單獨的網(wǎng)絡或者一個子網(wǎng)。當數(shù)據(jù)從一個子網(wǎng)傳輸?shù)搅硪粋€子網(wǎng)時,可通過路由器來完成。因此,路由器具有判斷網(wǎng)絡地址和選擇路徑的功能,它能在多網(wǎng)絡互聯(lián)環(huán)境中,建立靈活的連接,可用完全不同的數(shù)據(jù)分組和介質(zhì)訪問方法連接各種子網(wǎng),路由器只接受源 站或其他路由器的信息,屬網(wǎng)絡層的一種互聯(lián)設備。它不關心各子網(wǎng)使用的硬件設備,但要求運行與網(wǎng)絡層協(xié)議相一致的軟件。路由器分本地路由器和遠程路由器,本地路由器是用來連接網(wǎng)絡傳輸介質(zhì)的,如光纖、同軸電纜、雙絞線;遠程路由器是用來連接遠程傳輸介質(zhì),并要求相應的設備,如電話線要配調(diào)制解調(diào)器,無線要通過無線接收機、發(fā)射機。 路由器原理
其工作原理如下:
(1)工作站A將工作站B的地址12.0.0.5連同數(shù)據(jù)信息以數(shù)據(jù)幀的形式發(fā)送給路由器1。
(2)路由器1收到工作站A的數(shù)據(jù)幀后,先從報頭中取出地址12.0.0.5,并根據(jù)路徑表計算出發(fā)往工作站B的最佳路徑:R1->R2->R5->B;并將數(shù)據(jù)幀發(fā)往路由器2。
(3)路由器2重復路由器1的工作,并將數(shù)據(jù)幀轉發(fā)給路由器5。
(4)路由器5同樣取出目的地址,發(fā)現(xiàn)12.0.0.5就在該路由器所連接的網(wǎng)段上,于是將該數(shù)據(jù)幀直接交給工作站B。
(5)工作站B收到工作站A的數(shù)據(jù)幀,一次通信過程宣告結束。
事實上,路由器除了上述的路由選擇這一主要功能外,還具有網(wǎng)絡流量控制功能。有的路由器僅支持單一協(xié)議,但大部分路由器可以支持多種協(xié)議的傳輸,即多協(xié)議路由器。由于每一種協(xié)議都有自己的規(guī)則,要在一個路由器中完成多種協(xié)議的算法,勢必會 降低路由器的性能。因此,我們以為,支持多協(xié)議的路由器性能相對較低。用戶購買路由器時,需要根據(jù)自己的實際情況,選擇自己需要的網(wǎng)絡協(xié)議的路由器。
近年來出現(xiàn)了交換路由器產(chǎn)品,從本質(zhì)上來說它不是什么新技術,而是為了提高通信能力,把交換機的原理組合到路由器中,使數(shù)據(jù)傳輸能力更快、更好。
作用
路由器的一個作用是連通不同的網(wǎng)絡,另一個作用是選擇信息傳送的線路。選擇通暢快捷的近路,能大大提高通信速度,減輕網(wǎng)絡系統(tǒng)通信負荷,節(jié)約網(wǎng)絡系統(tǒng)資源,提高網(wǎng)絡系統(tǒng)暢通率,從而讓網(wǎng)絡系統(tǒng)發(fā)揮出更大的效益來。
從過濾網(wǎng)絡流量的角度來看,路由器的作用與交換機和網(wǎng)橋非常相似。但是與工作在網(wǎng)絡物理層,從物理上劃分網(wǎng)段的交換機不同,路由器使用專門的軟件協(xié)議從邏輯上對整個網(wǎng)絡進行劃分。例如,一臺支持IP協(xié)議的路由器可以把網(wǎng)絡劃分成多個子網(wǎng)段,只有指向特殊IP地址的網(wǎng)絡流量才可以通過路由器。對于每一個接收到的數(shù)據(jù)包,路由器都會重新計算其校驗值,并寫入新的物理地址。因此,使用路由器轉發(fā)和過濾數(shù)據(jù)的速度往往要比只查看數(shù)據(jù)包物理地址的交換機慢。但是,對于那些結構復雜的網(wǎng)絡,使用路由器可以提高網(wǎng)絡的整體效率。路由器的另外一個明顯優(yōu)勢就是可以自動過濾網(wǎng)絡廣播。從總體上說,在網(wǎng)絡中添加路由器的整個安裝過程要比即插即用的交換機復雜很多。
一般說來,異種網(wǎng)絡互聯(lián)與多個子網(wǎng)互聯(lián)都應采用路由器來完成。
路由器的主要工作就是為經(jīng)過路由器的每個數(shù)據(jù)幀尋找一條最佳傳輸路徑,并將該數(shù)據(jù)有效地傳送到目的站點。由此可見,選擇最佳路徑的策略即路由算法是路由器的關鍵所在。為了完成這項工作,在路由器中保存著各種傳輸路徑的相關數(shù)據(jù)--路徑表(Routing Table),供路由選擇時使用。路徑表中保存著子網(wǎng)的標志信息、網(wǎng)上路由器的個數(shù)和下一個路由器的名字等內(nèi)容。路徑表可以是由系統(tǒng)管理員固定設置好的,也可以由系統(tǒng)動態(tài)修改,可以由路由器自動調(diào)整,也可以由主機控制。
1.靜態(tài)路徑表
由系統(tǒng)管理員事先設置好固定的路徑表稱之為靜態(tài)(static)路徑表,一般是在系統(tǒng)安裝時就根據(jù)網(wǎng)絡的配置情況預先設定的,它不會隨未來網(wǎng)絡結構的改變而改變。
2.動態(tài)路徑表
動態(tài)(Dynamic)路徑表是路由器根據(jù)網(wǎng)絡系統(tǒng)的運行情況而自動調(diào)整的路徑表。路由器根據(jù)路由選擇協(xié)議(Routing Protocol)提供的功能,自動學習和記憶網(wǎng)絡運行情況,在需要時自動計算數(shù)據(jù)傳輸?shù)淖罴崖窂健?br>類型
互聯(lián)網(wǎng)各種級別的網(wǎng)絡中隨處都可見到路由器。接入網(wǎng)絡使得家庭和小型企業(yè)可以連接到某個互聯(lián)網(wǎng)服務提供商;企業(yè)網(wǎng)中的路由器連接一個校園或企業(yè)內(nèi)成千上萬的計算機;骨干網(wǎng)上的路由器終端系統(tǒng)通常是不能直接訪問的,它們連接長距離骨干網(wǎng)上的ISP和企業(yè)網(wǎng)絡。互聯(lián)網(wǎng)的快速發(fā)展無論是對骨干網(wǎng)、企業(yè)網(wǎng)還是接入網(wǎng)都帶來了不同的挑戰(zhàn)。骨干網(wǎng)要求路由器能對少數(shù)鏈路進行高速路由轉發(fā)。企業(yè)級路由器不但要求端口數(shù)目多、價格低廉,而且要求配置起來簡單方便,并提供QoS。
1.接入路由器
接入路由器連接家庭或ISP內(nèi)的小型企業(yè)客戶。接入路由器已經(jīng)開始不只是提供SLIP或PPP連接,還支持諸如PPTP和IPSec等虛擬私有網(wǎng)絡協(xié)議。這些協(xié)議要能在每個端口上運行。諸如ADSL等技術將很快提高各家庭的可用帶寬,這將進一步增加接入路由器的負擔。由于這些趨勢,接入路由器將來會支持許多異構和高速端口,并在各個端口能夠運行多種協(xié)議,同時還要避開電話交換網(wǎng)。
2.企業(yè)級路由器
企業(yè)或校園級路由器連接許多終端系統(tǒng),其主要目標是以盡量便宜的方法實現(xiàn)盡可能多的端點互連,并且進一步要求支持不同的服務質(zhì)量。許多現(xiàn)有的企業(yè)網(wǎng)絡都是由Hub或網(wǎng)橋連接起來的以太網(wǎng)段。盡管這些設備價格便宜、易于安裝、無需配置,但是它們不支持服務等級。相反,有路由器參與的網(wǎng)絡能夠將機器分成多個碰撞域,并因此能夠控制一個網(wǎng)絡的大小。此外,路由器還支持一定的服務等級,至少允許分成多個優(yōu)先級別。但是路由器的每端口造價要貴些,并且在能夠使用之前要進行大量的配置工作。因此,企業(yè)路由器的成敗就在于是否提供大量端口且每端口的造價很低,是否容易配置,是否支持QoS。另外還要求企業(yè)級路由器有效地支持廣播和組播。企業(yè)網(wǎng)絡還要處理歷史遺留的各種LAN技術,支持多種協(xié)議,包括IP、IPX和Vine。它們還要支持防火墻、包過濾以及大量的管理和安全策略以及VLAN。
3.骨干級路由器
骨干級路由器實現(xiàn)企業(yè)級網(wǎng)絡的互聯(lián)。對它的要求是速度和可靠性,而代價則處于次要地位。硬件可靠性可以采用電話交換網(wǎng)中使用的技術,如熱備份、雙電源、雙數(shù)據(jù)通路等來獲得。這些技術對所有骨干路由器而言差不多是標準的。骨干IP路由器的主要性能瓶頸是在轉發(fā)表中查找某個路由所耗的時間。當收到一個包時,輸入端口在轉發(fā)表中查找該包的目的地址以確定其目的端口,當包越短或者當包要發(fā)往許多目的端口時,勢必增加路由查找的代價。因此,將一些常訪問的目的端口放到緩存中能夠提高路由查找的效率。不管是輸入緩沖還是輸出緩沖路由器,都存在路由查找的瓶頸問題。除了性能瓶頸問題,路由器的穩(wěn)定性也是一個常被忽視的問題。
4.太比特路由器
在未來核心互聯(lián)網(wǎng)使用的三種主要技術中,光纖和DWDM都已經(jīng)是很成熟的并且是現(xiàn)成的。如果沒有與現(xiàn)有的光纖技術和DWDM技術提供的原始帶寬對應的路由器,新的網(wǎng)絡基礎設施將無法從根本上得到性能的改善,因此開發(fā)高性能的骨干交換/路由器(太比特路由器)已經(jīng)成為一項迫切的要求。太比特路由器技術現(xiàn)在還主要處于開發(fā)實驗階段。
5.多WAN路由器
早在2000年,北京欣全向工程師在研究一種多鏈路(Multi-Homing)解決方案時發(fā)現(xiàn),全部以太網(wǎng)協(xié)議的多WAN口設備在中國存在巨大的市場需求。伴隨著欣全向產(chǎn)品研發(fā)成功,全國第一臺雙WAN路由器誕生于公元2002年,中國第一款雙WAN寬帶路由器被命名為NuR8021。
雙WAN路由器具有物理上的2個WAN口作為外網(wǎng)接入,這樣內(nèi)網(wǎng)電腦就可以經(jīng)過雙WAN路由器的負載均衡功能同時使用2條外網(wǎng)接入線路,大幅提高了網(wǎng)絡帶寬。當前雙WAN路由器主要有“帶寬匯聚”和“一網(wǎng)雙線”的應用優(yōu)勢,這是傳統(tǒng)單WAN路由器做不到的。
分類介紹
寬帶路由器
寬帶路由器是近幾年來新興的一種網(wǎng)絡產(chǎn)品,它伴隨著寬帶的普及應運而生。寬帶路由器在一個緊湊的箱子中集成了路由器、防火墻、帶寬控制和管理等功能,具備快速轉發(fā)能力,靈活的網(wǎng)絡管理和豐富的網(wǎng)絡狀態(tài)等特點。多數(shù)寬帶路由器針對中國寬帶應用優(yōu)化設計,可滿足不同的網(wǎng)絡流量環(huán)境,具備滿足良好的電網(wǎng)適應性和網(wǎng)絡兼容性。多數(shù)寬帶路由器采用高度集成設計,集成10/100Mbps寬帶以太網(wǎng)WAN接口、并內(nèi)置多口10/100Mbps自適應交換機,方便多臺機器連接內(nèi)部網(wǎng)絡與Internet,可以廣泛應用于家庭、學校、辦公室、網(wǎng)吧、小區(qū)接入、政府、企業(yè)等場合。
模塊化路由器
模塊化路由器主要是指該路由器的接口類型及部分擴展功能是可以根據(jù)用戶的實際需求來配置的路由器,這些路由器在出廠時一般只提供最基本的路由功能,用戶可以根據(jù)所要連接的網(wǎng)絡類型來選擇相應的模塊,不同的模塊可以提供不同的連接和管理功能。例如,絕大多數(shù)模塊化路由器可以允許用戶選擇網(wǎng)絡接口類型,有些模塊化路由器可以提供VPN等功能模塊,有些模塊化路由器還提供防火墻的功能,等等。目前的多數(shù)路由器都是模塊化路由器。
非模塊化路由器
非模塊化路由器都是低端路由器,平時家用的即為這類非模塊化路由器。該類路由器主要用于連接家庭或ISP內(nèi)的小型企業(yè)客戶。它不僅提供SLIP或PPP連接,還支持諸如PPTP和IPSec等虛擬私有網(wǎng)絡協(xié)議。這些協(xié)議要能在每個端口上運行。諸如ADSL等技術將很快提高各家庭的可用寬帶,這將進一步增加接入路由器的負擔。由于這些趨勢,該類路由器將來會支持許多異構和高速端口,并在各個端口能夠運行多種協(xié)議,同時還要避開電話交換網(wǎng)
虛擬路由器
虛擬路由器以虛求實最近,一些有關IP骨干網(wǎng)絡設備的新技術突破,為將來因特網(wǎng)新服務的實現(xiàn)鋪平了道路。虛擬路由器就是這樣一種新技術,它使一些新型因特網(wǎng)服務成為可能。通過這些新型服務,用戶將可以對網(wǎng)絡的性能、因特網(wǎng)地址和路由以及網(wǎng)絡安全等進行控制。以色列RND網(wǎng)絡公司是一家提供從局域網(wǎng)到廣域網(wǎng)解決方案的廠商,該公司最早提出了虛擬路由的概念。
核心路由器
核心路由器又稱“骨干路由器”,是位于網(wǎng)絡中心的路由器。位于網(wǎng)絡邊緣的路由器叫接入路由器。核心路由器和邊緣路由器是相對概念。它們都屬于路由器,但是有不同的大小和容量。某一層的核心路由器是另一層的邊緣路由器。
無線路由器
無線路由器就是帶有無線覆蓋功能的路由器,它主要應用于用戶上網(wǎng)和無線覆蓋。市場上流行的無線路由器一般都支持專線xdsl/ cable,動態(tài)xdsl,pptp四種接入方式,它還具有其它一些網(wǎng)絡管理的功能,如dhcp服務、nat防火墻、mac地址過濾等等功能。
獨臂路由器
獨臂路由器的概念是出現(xiàn)在三層交換機之前,網(wǎng)內(nèi)各個VLAN之間的通信可以用ISL關聯(lián)來實現(xiàn),那樣的話,路由器就成為一個“獨臂路由器”,VLAN之間的數(shù)據(jù)傳輸要進入先路由器處理,然后輸出,以使得網(wǎng)絡中的大部分報文同一個VLAN內(nèi)的報文將用不著通過路由器而直接在交換設備間進行高速傳輸。 這種路由方式的不足之處在于它仍然是一種集中式的路由策略,因此在主干網(wǎng)上一般均設置有多個冗余“獨臂”路由器,來分擔數(shù)據(jù)處理任務,從而可以減少因路由器引起的瓶頸問題,還可以增加冗余鏈路,但如果網(wǎng)絡中VLAN之間的數(shù)據(jù)傳輸量比較大,那么在路由器處將形成瓶頸。獨臂路由器現(xiàn)在基本被第3層交換機取代
無線網(wǎng)絡路由器
無線網(wǎng)絡路由器是一種用來連接有線和無線網(wǎng)絡的通訊設備,它可以通過Wi-Fi技術收發(fā)無線信號來與個人數(shù)碼助理和筆記本等設備通訊。無線網(wǎng)絡路由器可以在不設電纜的情況下,方便地建立一個電腦網(wǎng)絡。
但是,在戶外通過無線網(wǎng)絡進行數(shù)據(jù)傳輸時,它的速度可能會受到天氣的影響。其他的無線網(wǎng)絡還包括了紅外線、藍牙及衛(wèi)星微波等。
智能流控路由器
智能流控路由器能夠在自動地調(diào)整每個節(jié)點的帶寬,這樣每個節(jié)點的網(wǎng)速均能達到最快,不用限制每個節(jié)點的速度,這是其最大的特點.智能流控路由器經(jīng)常用在電信的主干道上,如華為,思科。網(wǎng)吧,酒店等則常用網(wǎng)星路由器。
系構成
從體系結構上看,路由器可以分為第一代單總線單CPU結構路由器、第二代單總線主從CPU結構路由器、第三代單總線對稱式多CPU結構路由器;第四代多總線多CPU結構路由器、第五代共享內(nèi)存式結構路由器、第六代交叉開關體系結構路由器和基于機群系統(tǒng)的路由器等多類。
路由器具有四個要素:輸入端口、輸出端口、交換開關、路由處理器和其他端口。
輸入端口是物理鏈路和輸入包的進口處。端口通常由線卡提供,一塊線卡一般支持4、8或16個端口,一個輸入端口具有許多功能。第一個功能是進行數(shù)據(jù)鏈路層的封裝和解封裝。第二個功能是在轉發(fā)表中查找輸入包目的地址從而決定目的端口(稱為路由查找),路由查找可以使用一般的硬件來實現(xiàn),或者通過在每塊線卡上嵌入一個微處理器來完成。第三,為了提供QoS(服務質(zhì)量),端口要對收到的包分成幾個預定義的服務級別。第四,端口可能需要運行諸如SLIP(串行線網(wǎng)際協(xié)議)和PPP(點對點協(xié)議)這樣的數(shù)據(jù)鏈路級協(xié)議或者諸如PPTP(點對點隧道協(xié)議)這樣的網(wǎng)絡級協(xié)議。一旦路由查找完成,必須用交換開關將包送到其輸出端口。如果路由器是輸入端加隊列的,則有幾個輸入端共享同一個交換開關。這樣輸入端口的最后一項功能是參加對公共資源(如交換開關)的仲裁協(xié)議。
交換開關可以使用多種不同的技術來實現(xiàn)。迄今為止使用最多的交換開關技術是總線、交叉開關和共享存貯器。最簡單的開關使用一條總線來連接所有輸入和輸出端口,總線開關的缺點是其交換容量受限于總線的容量以及為共享總線仲裁所帶來的額外開銷。交叉開關通過開關提供多條數(shù)據(jù)通路,具有N×N個交叉點的交叉開關可以被認為具有2N條總線。如果一個交叉是閉合,輸入總線上的數(shù)據(jù)在輸出總線上可用,否則不可用。交叉點的閉合與打開由調(diào)度器來控制,因此,調(diào)度器限制了交換開關的速度。在共享存貯器路由器中,進來的包被存貯在共享存貯器中,所交換的僅是包的指針,這提高了交換容量,但是,開關的速度受限于存貯器的存取速度。盡管存貯器容量每18個月能夠翻一番,但存貯器的存取時間每年僅降低5%,這是共享存貯器交換開關的一個固有限制。
輸出端口在包被發(fā)送到輸出鏈路之前對包存貯,可以實現(xiàn)復雜的調(diào)度算法以支持優(yōu)先級等要求。與輸入端口一樣,輸出端口同樣要能支持數(shù)據(jù)鏈路層的封裝和解封裝,以及許多較高級協(xié)議。
路由處理器計算轉發(fā)表實現(xiàn)路由協(xié)議,并運行對路由器進行配置和管理的軟件。同時,它還處理那些目的地址不在線卡轉發(fā)表中的包。
其他端口一般指控制端口,由于路由器本身不帶有輸入和終端顯示設備,但它需要進行必要的配置后才能正常使用,所以一般的路由器都帶有一個控制端口"Console",用來與計算機或終端設備進行連接,通過特定的軟件來進行路由器的配置。所有路由器都安裝了控制臺端口,使用戶或管理員能夠利用終端與路由器進行通信,完成路由器配置。該端口提供了一個EIA/TIA-232異步串行接口,用于在本地對路由器進行配置(首次配置必須通過控制臺端口進行)。
Console端口使用配置專用連線直接連接至計算機串口,利用終端仿真程序(如Windows下的"超級終端")進行路由器本地配置。路由器的Console端口多為RJ-45端口。如下圖就包含了一個Console配置端口。
配置與調(diào)試
路由器在計算機網(wǎng)絡中有著舉足輕重的地位,是計算機網(wǎng)絡的橋梁。通過它不僅可以連通不同的網(wǎng)絡,還能選擇數(shù)據(jù)傳送的路徑,并能阻隔非法的訪問。
路由器的配置對初學者來說,并不是件十分容易的事。現(xiàn)將路由器的一般配置和簡單調(diào)試介紹給大家,供朋友們在配置路由器時參考,本文以Cisco2501為例。
Cisco2501有一個以太網(wǎng)口(AUI)、一個Console口(RJ45)、一個AUX口(RJ45)和兩個同步串口,支持DTE和DCE設備,支持 EIA/TIA-232、 EIA/TIA-449、 V.35 、X.25和EIA-530接口。
一.配置
1.配置以太網(wǎng)端口
# conf t(從終端配置路由器)
# int e0(指定E0口)
# ip addr ABCD XXXX(ABCD 為以太網(wǎng)地址,XXXX為子網(wǎng)掩碼)
# ip addr ABCD XXXX secondary(E0口同時支持兩個地址類型。如果第一個為 A類地址,則第二個為B或C類地址)
# no shutdown(激活E0口)
# exit
完成以上配置后,用ping命令檢查E0口是否正常。如果不正常,一般是因為沒有激活該端口,初學者往往容易忽視。用no shutdown命令激活E0口即可。
2.X.25的配置
# conf t
# int S0(指定S0口)
# ip addr ABCD XXXX(ABCD 為以太網(wǎng)S0 的IP地址,XXXX為子網(wǎng)掩碼)
# encap X25-ABC(封裝X.25協(xié)議。ABC指定X.25為DTE或DCE操作,缺省為DTE)
# x25 addr ABCD(ABCD為S0的X.25端口地址,由郵電局提供)
# x25 map ip ABCD XXXX br(映射的X.25地址。ABCD為對方路由器(如:S0)的IP 地址,XXXX為對方路由器(如:S0)的X.25端口地址)
# x25 htc X(配置最高雙向通道數(shù)。X的取值范圍1-4095,要根據(jù) 郵電局實際提供的數(shù)字配置)
# x25 nvc X(配置虛電路數(shù),X不可超過郵電局實際提供的數(shù)否則將影響數(shù)據(jù)的正常傳輸)
# exit
S0端口配置完成后,用no shutdown命令激活E0口。如果ping S0端口正常,ping 映射的X.25 IP地址即對方路由器端口IP地址不通,則可能是以下幾種情況引起的:1)本機X.25地址配置錯誤,重新與郵局核對(X.25地址長度為13位);2)本機映射IP地址或X.25地址配置錯誤,重新配置正確;3)對方IP地址或X.25地址配置錯誤;4)本機或對方路由配置錯誤。
能夠與對方通訊,但有丟包現(xiàn)象。出現(xiàn)這種情況,一般有以下幾種可能:1)線路情況不好,或網(wǎng)卡、RJ45插頭接觸不良;2)x25 htc最高雙向通道數(shù)X的取值范圍和x25nvc 虛電路數(shù)X超出郵電局實際提供的數(shù)字。最高雙向通道數(shù)和虛電路數(shù)這兩個值越大越好,但絕對不能超出郵電局實際提供的數(shù)字,否則就會出現(xiàn)丟包現(xiàn)象。
3.專線的配置
# conf t
# int S2(指定S2口)
# ip addr ABCD XXXX(ABCD 為S2 的IP地址,XXXX為子網(wǎng)掩碼)
# exit
專線口配置完成后,用no shutdown命令激活S2口即可。
4.幀中繼的配置
# conf t
# int s0
# ip addr ABCD XXXX (ABCD 為S0 的IP地址,XXXX為子網(wǎng)掩碼)
# encap frame_relay (封裝frame_relay 協(xié)議)
# no nrzi_encoding (NRZI=NO)
# frame_relay lmi_type q933a (LMI使用Q933A標準.LMI(Local management Interface) 有3種:ANSI:T1.617、CCITTY:Q933A和Cisco特有的標準)
# frame-relay intf-typ ABC(ABC為幀中繼設備類型,它們分別是DTE設備、DCE交換機或NNI(網(wǎng)絡接點接口)支持)
# frame_relay interface_dlci 110 br(配置DLCI(數(shù)據(jù)鏈路連接標識符))
# frame-relay map ip ABCD XXXX broadcast (建立幀中繼映射。ABCD為對方IP地址,XXXX為本地DLCI號,broadcast允許廣播向前轉發(fā)或更新路由)
# no shutdown (激活本端口)
# exit
幀中繼S0端口配置完成后,用ping命令檢查S0口。如果不正常,通常是因為沒有激活該端口,用no shutdown命令激活S0口即可。如果ping S0端口正常,ping 映射的IP地址不正常,則可能是幀中繼交換機或對方配置錯誤,需要綜合排查。
5.配置同步/異步口(適用于2522)
# conf t
# int s2
# ph asyn (配置S2為異步口)
# ph sync (配置S2為同步口)
6.動態(tài)路由的配置
# conf t
# router eigrp 20 (使用EIGRP路由協(xié)議。常用的路由協(xié)議有RIP、IGRP、IS-IS等)
# passive-interface serial0 (若S0與X.25相連,則輸入本條指令)
# passive-interface serial1 (若S1與X.25相連,則輸入本條指令)
# network ABCD (ABCD為本機的以太網(wǎng)地址)
# network XXXX (XXXX為S0的IP地址)
# no auto-summary
# exit
7.靜態(tài)路由的配置
# ip router ABCD XXXX YYYY 90 (ABCD為對方路由器的以太網(wǎng)地址,XXXX 為子網(wǎng)掩碼,YYYY為對方對應的廣域網(wǎng)端口地址)
# dialer-list 1 protocol ip permit
二. 綜合調(diào)試
當路由器全部配置完畢后,可進行一次綜合調(diào)試。
1.首先將路由器的以太網(wǎng)口和所有要使用的串口都激活。方法是進入該口,執(zhí)行no shutdown。
2.將和路由器相連的主機加上缺省路由(中心路由器的以太地址)。方法是在Unix系統(tǒng)的超級用戶下執(zhí)行:router add default XXXX 1(XXXX為路由器的E0口地址)。每臺主機都要加缺省路由,否則,將不能正常通訊。
3.ping本機的路由器以太網(wǎng)口,若不通,可能以太網(wǎng)口沒有激活或不在一個網(wǎng)段上。ping廣域網(wǎng)口,若不通,則沒有加缺省路由。ping對方廣域網(wǎng)口,若不通,路由器配置錯誤。ping主機以太網(wǎng)口,若不通,對方主機沒有加缺省路由。
4.在專線卡X.25主機上加網(wǎng)關(靜態(tài)路由)。方法是在Unix系統(tǒng)的超級用戶下執(zhí)行:router add X.X.X.X Y.Y.Y.Y 1(X.X.X.X為對方以太網(wǎng)地址,Y.Y.Y.Y為對方廣域網(wǎng)地址)。
5.使用Tracert對路由進行跟蹤,以確定不通網(wǎng)段。
路由器的選購
選擇路由器時應注意安全性、控制軟件、網(wǎng)絡擴展能力、網(wǎng)管系統(tǒng)、帶電插拔能力等方面。
1.由于路由器是網(wǎng)絡中比較關鍵的設備,針對網(wǎng)絡存在的各種安全隱患,路由器必須具有如下的安全特性:
(1)可靠性與線路安全 可靠性要求是針對故障恢復和負載能力而提出來的。對于路由器來說,可靠性主要體現(xiàn)在接口故障和網(wǎng)絡流量增大兩種情況下,為此,備份是路由器不可或缺的手段之一。當主接口出現(xiàn)故障時,備份接口自動投入工作,保證網(wǎng)絡的正常運行。當網(wǎng)絡流量增大時,備份接口又可承當負載分擔的任務。 (2)身份認證 路由器中的身份認證主要包括訪問路由器時的身份認證、對端路由器的身份認證和路由信息的身份認證。
(3)訪問控制 對于路由器的訪問控制,需要進行口令的分級保護。有基于IP地址的訪問控制和基于用戶的訪問控制。
(4)信息隱藏 與對端通信時,不一定需要用真實身份進行通信。通過地址轉換,可以做到隱藏網(wǎng)內(nèi)地址,只以公共地址的方式訪問外部網(wǎng)絡。除了由內(nèi)部網(wǎng)絡首先發(fā)起的連接,網(wǎng)外用戶不能通過地址轉換直接訪問網(wǎng)內(nèi)資源。
(5)數(shù)據(jù)加密
(6)攻擊探測和防范
(7)安全管理
2.路由器的控制軟件是路由器發(fā)揮功能的一個關鍵環(huán)節(jié)。從軟件的安裝、參數(shù)自動設置,到軟件版本的升級都是必不可少的。軟件安裝、參數(shù)設置及調(diào)試越方便,用戶使用就越容易掌握,就能更好地應用。
3.隨著計算機網(wǎng)絡應用的逐漸增加,現(xiàn)有的網(wǎng)絡規(guī)模有可能不能滿足實際需要,會產(chǎn)生擴大網(wǎng)絡規(guī)模的要求,因此擴展能力是一個網(wǎng)絡在設計和建設過程中必須要考慮的。擴展能力的大小主要看路由器支持的擴展槽數(shù)目或者擴展端口數(shù)目。
4.隨著網(wǎng)絡的建設,網(wǎng)絡規(guī)模會越來越大,網(wǎng)絡的維護和管理就越難進行,所以網(wǎng)絡管理顯得尤為重要。 5.在我們安裝、調(diào)試、檢修和維護或者擴展計算機網(wǎng)絡的過程中,免不了要給網(wǎng)絡中增減設備,也就是說可能會要插拔網(wǎng)絡部件。那么路由器能否支持帶電插拔,是路由器的一個重要的性能指標。
外型尺寸的選擇
如果網(wǎng)絡已完成樓宇級的綜合布線,工程要求網(wǎng)絡設備上機式集中管理,應選擇19英寸寬的機架式路由器,如Cisco2509、華為2501(配置同Cisco2501)。如果沒有上述需求,桌面型的路由器如Intel的8100和Cisco的1600系列,具有更高的性能價格比。
協(xié)議的選擇
由于最初局域網(wǎng)并沒先出標準后出產(chǎn)品,所以很多廠商如Apple和IBM都提出了自己的標準,產(chǎn)生了如AppleTalk和IBM協(xié)議,Novell公司的網(wǎng)絡操作系統(tǒng)運行IPX/SPX協(xié)議,在連接這些異構網(wǎng)絡時需要路由器對這些協(xié)議提供支持。Intel9100系列和9200系列的路由器可提供免費支持,3Com的系列路由產(chǎn)品也提供較廣泛的協(xié)議支持。
路由器作為網(wǎng)絡設備中的“黑匣子”,工作在后臺。用戶選擇路由器時,多從技術角度來考慮,如可延展性、路由協(xié)議互操作性、廣域數(shù)據(jù)服務支持、內(nèi)部ATM支持、SAN集成能力等。另外,選擇路由器還應遵循如下基本原則:即標準化原則、技術簡單性原則、環(huán)境適應性原則、可管理性原則和容錯冗余性原則。對于高端路由器,更多的還應該考慮是否和如何適應骨干網(wǎng)對網(wǎng)絡高可靠性、接口高擴展性以及路由查找和數(shù)據(jù)轉發(fā)的高性能要求。高可靠性、高擴展性和高性能的“三高”特性是高端路由器區(qū)別于中、低端路由器的關鍵所在。
CISCO路由器初始配置簡介
很多初學路由器知識的網(wǎng)友對路由器的初始配置可能感到很陌生,本人在初學時也很困惑,因為一下出來很多提問不知如何是好,下面將最近剛調(diào)試的一臺CISCO3640的初始配置整理出來與各位網(wǎng)友交流,如有疏漏之處,還請大家指正。
1.用CISCO隨機帶CONSOLE線,一端連在CISCO路由器的CONSOLE口,一端連在計算機的COM口。
2.打開電腦,啟動超級終端.為您的連接取個名字,比如CISCO_SETUP,下一步選定連接時用COM1,下一步選定第秒位數(shù)9600,數(shù)據(jù)位8,奇偶校驗無,停止位1,數(shù)據(jù)流控制無.最后選確定。
3.打開路由器電源,這時超級終端將出現(xiàn)以下畫面:
System Bootstrap, Version 11.1(20)AA2, EARLY DEPLOYMENT RELEASE SOFTWARE (fc1)
Copyright (c) 1999 by cisco Systems, Inc.C3600 processor with 32768 Kbytes of main memory Main memory is configured to 64 bit mode with parity disabled
program load complete, entry point: 0x80008000, size: 0x4ed478 Self decompressing the image :
[OK]
Restricted Rights Legend
Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph
(c) of the Commercial Computer Software - Restricted
Rights clause at FAR sec. 52.227-19 and subparagraph
(c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS sec. 252.227-7013.
cisco Systems, Inc.
170 West Tasman Drive
San Jose, California 95134-1706
Cisco Internetwork Operating System Software
IOS (tm) 3600 Software (C3640-I-M), Version 12.1(2)T, RELEASE SOFTWARE (fc1)
Copyright (c) 1986-2000 by cisco Systems, Inc.
Compiled Tue 16-May-00 12:26 by ccai
Image text-base: 0x600088F0, data-base: 0x60924000
cisco 3640 (R4700) processor (revision 0x00) with 24576K/8192K bytes of memory.
Processor board ID 25125768
R4700 CPU at 100Mhz, Implementation 33, Rev 1.0
Bridging software.
X.25 software, Version 3.0.0.
2 FastEthernet/IEEE 802.3 interface(s)
1 Serial network interface(s)
DRAM configuration is 64 bits wide with parity disabled.
125K bytes of non-volatile configuration memory.
8192K bytes of processor board System flash (Read/Write)
--- System Configuration Dialog ---
Would you like to enter the initial configuration dialog? [yes/no]: y
您是否進入初始化配置對話,選Y
At any point you may enter a question mark '?' for help.
Use ctrl-c to abort configuration dialog at any prompt.
Default settings are in square brackets '[]'.Basic management setup configures only enough connectivity
for management of the system, extended setup will ask you
to configure each interface on the system
Would you like to enter basic management setup? [yes/no]: n
您是否進入基本配置安裝,選N
First, would you like to see the current interface summary? [yes]: y
首先,您是否看一下當前端口狀態(tài)
Any interface listed with OK? value "NO" does not have a valid configuration
Interface IP-Address OK? Method Status Protocol
FastEthernet0/0unassigned NO unset up down
Serial0/0 unassigned NO unset down down
FastEthernet0/1unassigned NO unset up down
Configuring global parameters:
Enter host name [Router]:RouterA
輸入路由器的名字
The enable secret is a password used to protect access to
privileged EXEC and configuration modes. This password, after
entered, becomes encrypted in the configuration.
Enter enable secret: aaa
輸入密文
The enable password is used when you do not specify an
enable secret password, with some older software versions, and
some boot images.
Enter enable password: bbb
輸入密碼(不能和密文相同)
The virtual terminal password is used to protect
access to the router over a network interface.
Enter virtual terminal password: ccc
輸入虛擬終端的密碼(以備遠程登錄)
Configure SNMP Network Management? [yes]: n
配置簡單網(wǎng)管嗎?選N
Configure IP? [yes]: y
配置IP嗎?選Y
Configure IGRP routing? [yes]: n
配置IGRP路由選擇協(xié)議嗎?選N
Configure RIP routing? [no]:
配置RIP路由選擇協(xié)議嗎?選N
Configure bridging? [no]:
配置橋接嗎?選N
Async lines accept incoming modems calls. If you will have
users dialing in via modems, configure these lines.
Configure Async lines? [yes]: n
配置異步線路嗎?選N
Configuring interface parameters:
Do you want to configure FastEthernet0/0 interface? [yes]: y
您是否想配置fastethernet0/0接口?選Y
Use the 100 Base-TX (RJ-45) connector? [yes]: y
用RJ45的連接器嗎?選Y
Operate in full-duplex mode? [no]: y
選用全雙工模式?選Y
Configure IP on this interface? [yes]: y
在這個接口上配置IP嗎?選Y
IP address for this interface: 192.168.0.1
配置該接口的IP地址(在此地址為192.168.0.1
Subnet mask for this interface [255.255.255.0] :
配置該接口的子網(wǎng)掩碼.(默認的是255.255.255.0,可以手工輸入修改)
Class C network is 192.168.0.0, 24 subnet bits; mask is /24
Do you want to configure Serial0/0 interface? [yes]: y
您想配置serial0/0接口嗎?選Y
Some supported encapsulations are
ppp/hdlc/frame-relay/lapb/x25/atm-dxi/smds
Choose encapsulation type [hdlc]:
選擇封裝方式(默認的封裝方式是HDLC,您可根據(jù)與您的路由器相連選用的封裝類型來決定用什么樣的封裝類型
No serial cable seen.
Choose mode from (dce/dte) [dte]:
(因為沒有連串口線所以會讓您選擇設備類型)
Configure IP on this interface? [yes]: y
(在接口上配置IP)
Configure IP unnumbered on this interface? [no]:
IP address for this interface: 172.16.0.5
配置該接口的IP地址(在此地址為172.16.0.5)
Subnet mask for this interface [255.255.0.0] : 255.255.255.252
配置該接口的子網(wǎng)掩碼.(默認的是255.255.0.0,可以手工輸入修改為255.255.255.252)
Class B network is 172.16.0.0, 30 subnet bits; mask is /30
(以下配置同上)
Do you want to configure FastEthernet0/1 interface? [yes]:
Use the 100 Base-TX (RJ-45) connector? [yes]:
Operate in full-duplex mode? [no]: y
Configure IP on this interface? [yes]: y
IP address for this interface: 172.16.0.9
Subnet mask for this interface [255.255.0.0] : 255.255.255.252 Class B network is 172.16.0.0, 30 subnet bits; mask is /30
The following configuration command script was created:
(把您的配置顯示出來)
hostname aaa
enable secret 5 $ul/V$ezbZFgvzGHD.YPSieC0Ew/
enable password RouterA
line vty 0 4
password ccc
no snmp-server
!
ip routing
no bridge 1
!
interface FastEthernet0/0
media-type 100BaseX
full-duplex
ip address 192.168.0.1 255.255.255.0
!
interface Serial0/0
encapsulation hdlc
ip address 172.16.0.5 255.255.255.252
!
interface FastEthernet0/1
media-type 100BaseX
full-duplex
ip address 172.16.0.9 255.255.255.252
dialer-list 1 protocol ip permit
dialer-list 1 protocol ipx permit
!
end
以下提示您是否保存這次設置
[0] Go to the IOS command prompt without saving this config.
[1] Return back to the setup without saving this config.
[2] Save this configuration to nvram and exit.
Enter your selection [2]: 2
選擇2保存設置并存入NVRAM中
Building configuration...
[OK] Use the enabled mode 'configure' command to modify this configuration.
Press RETURN to get started!
路由器重新啟動
00:00:08: %LINK-3-UPDOWN: Interface Serial0/0, changed state to down
00:00:08: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up
00:00:08: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up
00:00:09: %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/0, changed state to down
00:00:09: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to down
00:00:09: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to down
00:03:18: %IP-5-WEBINST_KILL: Terminating DNS process
00:03:24: %SYS-5-RESTART: System restarted --
Cisco Internetwork Operating System Software
IOS (tm) 3600 Software (C3640-I-M), Version 12.1(2)T, RELEASE SOFTWARE (fc1)
Copyright (c) 1986-2000 by cisco Systems, Inc.
Compiled Tue 16-May-00 12:26 by ccai
RouterA>
進入用戶模式
RouterA>en
Password:
RouterA#
進入全局模式
RouterA#sh run
查看現(xiàn)在運行的配置
Building configuration...
Current configuration:
!
version 12.1
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname RouterA
!
enable secret 5 $ul/V$ezbZFgvzGHD.YPSieC0Ew/
enable password bbb
!
memory-size iomem 25
ip subnet-zero
!
interface FastEthernet0/0
ip address 192.168.0.1 255.255.255.0
speed auto
full-duplex
!
interface Serial0/0
ip address 172.16.0.5 255.255.255.252
clockrate 2000000
!
interface FastEthernet0/1
ip address 172.16.0.9 255.255.255.252
speed auto
full-duplex
!
ip classless
no ip http server
!
dialer-list 1 protocol ip permit
dialer-list 1 protocol ipx permit
!
line con 0
transport input none
line aux 0
line vty 0 4
password ccc
login
!
end
現(xiàn)在您就完成了了一個新路由器的基本配置,接下來就可以進行進一步的詳細配置了
本文通過闡述TCP/IP網(wǎng)絡中路由器的基本工作原理,介紹了IP路由器的幾大功能,給出了靜態(tài)路由協(xié)議和動態(tài)路由協(xié)議,以及內(nèi)部網(wǎng)關協(xié)議和外部網(wǎng)關協(xié)議的概念,同時簡要介紹了目前最常見的RIP、OSPF、BGP和BGP-4這幾種路由協(xié)議,然后描述了路由算法的設計目標和種類,著重介紹了鏈路狀態(tài)法和距離向量法。在文章的最后,扼要講述了新一代路由器的特征。
——近十年來,隨著計算機網(wǎng)絡規(guī)模的不斷擴大,大型互聯(lián)網(wǎng)絡(如Internet)的迅猛發(fā)展,路由技術在網(wǎng)絡技術中已逐漸成為關鍵部分,路由器也隨之成為最重要的網(wǎng)絡設備。用戶的需求推動著路由技術的發(fā)展和路由器的普及,人們已經(jīng)不滿足于僅在本地網(wǎng)絡上共享信息,而希望最大限度地利用全球各個地區(qū)、各種類型的網(wǎng)絡資源。而在目前的情況下,任何一個有一定規(guī)模的計算機網(wǎng)絡(如企業(yè)網(wǎng)、校園網(wǎng)、智能大廈等),無論采用的是快速以大網(wǎng)技術、FDDI技術,還是ATM技術,都離不開路由器,否則就無法正常運作和管理。
1 網(wǎng)絡互連
——把自己的網(wǎng)絡同其它的網(wǎng)絡互連起來,從網(wǎng)絡中獲取更多的信息和向網(wǎng)絡發(fā)布自己的消息,是網(wǎng)絡互連的最主要的動力。網(wǎng)絡的互連有多種方式,其中使用最多的是網(wǎng)橋互連和路由器互連。
1.1 網(wǎng)橋互連的網(wǎng)絡
——網(wǎng)橋工作在OSI模型中的第二層,即鏈路層。完成數(shù)據(jù)幀(frame)的轉發(fā),主要目的是在連接的網(wǎng)絡間提供透明的通信。網(wǎng)橋的轉發(fā)是依據(jù)數(shù)據(jù)幀中的源地址和目的地址來判斷一個幀是否應轉發(fā)和轉發(fā)到哪個端口。幀中的地址稱為“MAC”地址或“硬件”地址,一般就是網(wǎng)卡所帶的地址。
——網(wǎng)橋的作用是把兩個或多個網(wǎng)絡互連起來,提供透明的通信。網(wǎng)絡上的設備看不到網(wǎng)橋的存在,設備之間的通信就如同在一個網(wǎng)上一樣方便。由于網(wǎng)橋是在數(shù)據(jù)幀上進行轉發(fā)的,因此只能連接相同或相似的網(wǎng)絡(相同或相似結構的數(shù)據(jù)幀),如以太網(wǎng)之間、以太網(wǎng)與令牌環(huán)(token ring)之間的互連,對于不同類型的網(wǎng)絡(數(shù)據(jù)幀結構不同),如以太網(wǎng)與X.25之間,網(wǎng)橋就無能為力了。
——網(wǎng)橋擴大了網(wǎng)絡的規(guī)模,提高了網(wǎng)絡的性能,給網(wǎng)絡應用帶來了方便,在以前的網(wǎng)絡中,網(wǎng)橋的應用較為廣泛。但網(wǎng)橋互連也帶來了不少問題:一個是廣播風暴,網(wǎng)橋不阻擋網(wǎng)絡中廣播消息,當網(wǎng)絡的規(guī)模較大時(幾個網(wǎng)橋,多個以太網(wǎng)段),有可能引起廣播風暴(broadcasting storm),導致整個網(wǎng)絡全被廣播信息充滿,直至完全癱瘓。第二個問題是,當與外部網(wǎng)絡互連時,網(wǎng)橋會把內(nèi)部和外部網(wǎng)絡合二為一,成為一個網(wǎng),雙方都自動向對方完全開放自己的網(wǎng)絡資源。這種互連方式在與外部網(wǎng)絡互連時顯然是難以接受的。問題的主要根源是網(wǎng)橋只是最大限度地把網(wǎng)絡溝通,而不管傳送的信息是什么。
1.2 路由器互連網(wǎng)絡
——路由器互連與網(wǎng)絡的協(xié)議有關,我們討論限于TCP/IP網(wǎng)絡的情況。
——路由器工作在OSI模型中的第三層,即網(wǎng)絡層。路由器利用網(wǎng)絡層定義的“邏輯”上的網(wǎng)絡地址(即IP地址)來區(qū)別不同的網(wǎng)絡,實現(xiàn)網(wǎng)絡的互連和隔離,保持各個網(wǎng)絡的獨立性。路由器不轉發(fā)廣播消息,而把廣播消息限制在各自的網(wǎng)絡內(nèi)部。發(fā)送到其他網(wǎng)絡的數(shù)據(jù)茵先被送到路由器,再由路由器轉發(fā)出去。
——IP路由器只轉發(fā)IP分組,把其余的部分擋在網(wǎng)內(nèi)(包括廣播),從而保持各個網(wǎng)絡具有相對的獨立性,這樣可以組成具有許多網(wǎng)絡(子網(wǎng))互連的大型的網(wǎng)絡。由于是在網(wǎng)絡層的互連,路由器可方便地連接不同類型的網(wǎng)絡,只要網(wǎng)絡層運行的是IP協(xié)議,通過路由器就可互連起來。
——網(wǎng)絡中的設備用它們的網(wǎng)絡地址(TCP/IP網(wǎng)絡中為IP地址)互相通信。IP地址是與硬件地址無關的“邏輯”地址。路由器只根據(jù)IP地址來轉發(fā)數(shù)據(jù)。IP地址的結構有兩部分,一部分定義網(wǎng)絡號,另一部分定義網(wǎng)絡內(nèi)的主機號。目前,在Internet網(wǎng)絡中采用子網(wǎng)掩碼來確定IP地址中網(wǎng)絡地址和主機地址。子網(wǎng)掩碼與IP地址一樣也是32bit,并且兩者是一一對應的,并規(guī)定,子網(wǎng)掩碼中數(shù)字為“1”所對應的IP地址中的部分為網(wǎng)絡號,為“0”所對應的則為主機號。網(wǎng)絡號和主機號合起來,才構成一個完整的IP地址。同一個網(wǎng)絡中的主機IP地址,其網(wǎng)絡號必須是相同的,這個網(wǎng)絡稱為IP子網(wǎng)。
——通信只能在具有相同網(wǎng)絡號的IP地址之間進行,要與其它IP子網(wǎng)的主機進行通信,則必須經(jīng)過同一網(wǎng)絡上的某個路由器或網(wǎng)關(gateway)出去。不同網(wǎng)絡號的IP地址不能直接通信,即使它們接在一起,也不能通信。
——路由器有多個端口,用于連接多個IP子網(wǎng)。每個端口的IP地址的網(wǎng)絡號要求與所連接的IP子網(wǎng)的網(wǎng)絡號相同。不同的端口為不同的網(wǎng)絡號,對應不同的IP子網(wǎng),這樣才能使各子網(wǎng)中的主機通過自己子網(wǎng)的IP地址把要求出去的IP分組送到路由器上。
2 路由原理
——當IP子網(wǎng)中的一臺主機發(fā)送IP分組給同一IP子網(wǎng)的另一臺主機時,它將直接把IP分組送到網(wǎng)絡上,對方就能收到。而要送給不同IP于網(wǎng)上的主機時,它要選擇一個能到達目的子網(wǎng)上的路由器,把IP分組送給該路由器,由路由器負責把IP分組送到目的地。如果沒有找到這樣的路由器,主機就把IP分組送給一個稱為“缺省網(wǎng)關(default gateway)”的路由器上。“缺省網(wǎng)關”是每臺主機上的一個配置參數(shù),它是接在同一個網(wǎng)絡上的某個路由器端口的IP地址。
——路由器轉發(fā)IP分組時,只根據(jù)IP分組目的IP地址的網(wǎng)絡號部分,選擇合適的端口,把IP分組送出去。同主機一樣,路由器也要判定端口所接的是否是目的子網(wǎng),如果是,就直接把分組通過端口送到網(wǎng)絡上,否則,也要選擇下一個路由器來傳送分組。路由器也有它的缺省網(wǎng)關,用來傳送不知道往哪兒送的IP分組。這樣,通過路由器把知道如何傳送的IP分組正確轉發(fā)出去,不知道的IP分組送給“缺省網(wǎng)關”路由器,這樣一級級地傳送,IP分組最終將送到目的地,送不到目的地的IP分組則被網(wǎng)絡丟棄了。
——目前TCP/IP網(wǎng)絡,全部是通過路由器互連起來的,Internet就是成千上萬個IP子網(wǎng)通過路由器互連起來的國際性網(wǎng)絡。這種網(wǎng)絡稱為以路由器為基礎的網(wǎng)絡(router based network),形成了以路由器為節(jié)點的“網(wǎng)間網(wǎng)”。在“網(wǎng)間網(wǎng)”中,路由器不僅負責對IP分組的轉發(fā),還要負責與別的路由器進行聯(lián)絡,共同確定“網(wǎng)間網(wǎng)”的路由選擇和維護路由表。
——路由動作包括兩項基本內(nèi)容:尋徑和轉發(fā)。尋徑即判定到達目的地的最佳路徑,由路由選擇算法來實現(xiàn)。由于涉及到不同的路由選擇協(xié)議和路由選擇算法,要相對復雜一些。為了判定最佳路徑,路由選擇算法必須啟動并維護包含路由信息的路由表,其中路由信息依賴于所用的路由選擇算法而不盡相同。路由選擇算法將收集到的不同信息填入路由表中,根據(jù)路由表可將目的網(wǎng)絡與下一站(nexthop)的關系告訴路由器。路由器間互通信息進行路由更新,更新維護路由表使之正確反映網(wǎng)絡的拓撲變化,并由路由器根據(jù)量度來決定最佳路徑。這就是路由選擇協(xié)議(routing protocol),例如路由信息協(xié)議(RIP)、開放式最短路徑優(yōu)先協(xié)議(OSPF)和邊界網(wǎng)關協(xié)議(BGP)等。
——轉發(fā)即沿尋徑好的最佳路徑傳送信息分組。路由器首先在路由表中查找,判明是否知道如何將分組發(fā)送到下一個站點(路由器或主機),如果路由器不知道如何發(fā)送分組,通常將該分組丟棄;否則就根據(jù)路由表的相應表項將分組發(fā)送到下一個站點,如果目的網(wǎng)絡直接與路由器相連,路由器就把分組直接送到相應的端口上。這就是路由轉發(fā)協(xié)議(routed protocol)。
——路由轉發(fā)協(xié)議和路由選擇協(xié)議是相互配合又相互獨立的概念,前者使用后者維護的路由表,同時后者要利用前者提供的功能來發(fā)布路由協(xié)議數(shù)據(jù)分組。下文中提到的路由協(xié)議,除非特別說明,都是指路由選擇協(xié)議,這也是普遍的習慣。
3 路由協(xié)議
——典型的路由選擇方式有兩種:靜態(tài)路由和動態(tài)路由。
——靜態(tài)路由是在路由器中設置的固定的路由表。除非網(wǎng)絡管理員干預,否則靜態(tài)路由不會發(fā)生變化。由于靜態(tài)路由不能對網(wǎng)絡的改變作出反映,一般用于網(wǎng)絡規(guī)模不大、拓撲結構固定的網(wǎng)絡中。靜態(tài)路由的優(yōu)點是簡單、高效、可靠。在所有的路由中,靜態(tài)路由優(yōu)先級最高。當動態(tài)路由與靜態(tài)路由發(fā)生沖突時,以靜態(tài)路由為準。
——動態(tài)路由是網(wǎng)絡中的路由器之間相互通信,傳遞路由信息,利用收到的路由信息更新路由器表的過程。它能實時地適應網(wǎng)絡結構的變化。如果路由更新信息表明發(fā)生了網(wǎng)絡變化,路由選擇軟件就會重新計算路由,并發(fā)出新的路由更新信息。這些信息通過各個網(wǎng)絡,引起各路由器重新啟動其路由算法,并更新各自的路由表以動態(tài)地反映網(wǎng)絡拓撲變化。動態(tài)路由適用于網(wǎng)絡規(guī)模大、網(wǎng)絡拓撲復雜的網(wǎng)絡。當然,各種動態(tài)路由協(xié)議會不同程度地占用網(wǎng)絡帶寬和CPU資源。
——靜態(tài)路由和動態(tài)路由有各自的特點和適用范圍,因此在網(wǎng)絡中動態(tài)路由通常作為靜態(tài)路由的補充。當一個分組在路由器中進行尋徑時,路由器首先查找靜態(tài)路由,如果查到則根據(jù)相應的靜態(tài)路由轉發(fā)分組;否則再查找動態(tài)路由。
——根據(jù)是否在一個自治域內(nèi)部使用,動態(tài)路由協(xié)議分為內(nèi)部網(wǎng)關協(xié)議(IGP)和外部網(wǎng)關協(xié)議(EGP)。這里的自治域指一個具有統(tǒng)一管理機構、統(tǒng)一路由策略的網(wǎng)絡。自治域內(nèi)部采用的路由選擇協(xié)議稱為內(nèi)部網(wǎng)關協(xié)議,常用的有RIP、OSPF;外部網(wǎng)關協(xié)議主要用于多個自治域之間的路由選擇,常用的是BGP和BGP-4。下面分別進行簡要介紹。
3.1 RIP路由協(xié)議
——RIP協(xié)議最初是為Xerox網(wǎng)絡系統(tǒng)的Xerox parc通用協(xié)議而設計的,是Internet中常用的路由協(xié)議。RIP采用距離向量算法,即路由器根據(jù)距離選擇路由,所以也稱為距離向量協(xié)議。路由器收集所有可到達目的地的不同路徑,并且保存有關到達每個目的地的最少站點數(shù)的路徑信息,除到達目的地的最佳路徑外,任何其它信息均予以丟棄。同時路由器也把所收集的路由信息用RIP協(xié)議通知相鄰的其它路由器。這樣,正確的路由信息逐漸擴散到了全網(wǎng)。
——RIP使用非常廣泛,它簡單、可靠,便于配置。但是RIP只適用于小型的同構網(wǎng)絡,因為它允許的最大站點數(shù)為15,任何超過15個站點的目的地均被標記為不可達。而且RIP每隔30s一次的路由信息廣播也是造成網(wǎng)絡的廣播風暴的重要原因之一。
3.2 OSPF路由協(xié)議
——80年代中期,RIP已不能適應大規(guī)模異構網(wǎng)絡的互連,0SPF隨之產(chǎn)生。它是網(wǎng)間工程任務組織(1ETF)的內(nèi)部網(wǎng)關協(xié)議工作組為IP網(wǎng)絡而開發(fā)的一種路由協(xié)議。
——0SPF是一種基于鏈路狀態(tài)的路由協(xié)議,需要每個路由器向其同一管理域的所有其它路由器發(fā)送鏈路狀態(tài)廣播信息。在OSPF的鏈路狀態(tài)廣播中包括所有接口信息、所有的量度和其它一些變量。利用0SPF的路由器首先必須收集有關的鏈路狀態(tài)信息,并根據(jù)一定的算法計算出到每個節(jié)點的最短路徑。而基于距離向量的路由協(xié)議僅向其鄰接路由器發(fā)送有關路由更新信息。
——與RIP不同,OSPF將一個自治域再劃分為區(qū),相應地即有兩種類型的路由選擇方式:當源和目的地在同一區(qū)時,采用區(qū)內(nèi)路由選擇;當源和目的地在不同區(qū)時,則采用區(qū)間路由選擇。這就大大減少了網(wǎng)絡開銷,并增加了網(wǎng)絡的穩(wěn)定性。當一個區(qū)內(nèi)的路由器出了故障時并不影響自治域內(nèi)其它區(qū)路由器的正常工作,這也給網(wǎng)絡的管理、維護帶來方便。
3.3 BGP和BGP-4路由協(xié)議
——BGP是為TCP/IP互聯(lián)網(wǎng)設計的外部網(wǎng)關協(xié)議,用于多個自治域之間。它既不是基于純粹的鏈路狀態(tài)算法,也不是基于純粹的距離向量算法。它的主要功能是與其它自治域的BGP交換網(wǎng)絡可達信息。各個自治域可以運行不同的內(nèi)部網(wǎng)關協(xié)議。BGP更新信息包括網(wǎng)絡號/自治域路徑的成對信息。自治域路徑包括到達某個特定網(wǎng)絡須經(jīng)過的自治域串,這些更新信息通過TCP傳送出去,以保證傳輸?shù)目煽啃浴?/font>
——為了滿足Internet日益擴大的需要,BGP還在不斷地發(fā)展。在最新的BGp4中,還可以將相似路由合并為一條路由。
3.4 路由表項的優(yōu)先問題
——在一個路由器中,可同時配置靜態(tài)路由和一種或多種動態(tài)路由。它們各自維護的路由表都提供給轉發(fā)程序,但這些路由表的表項間可能會發(fā)生沖突。這種沖突可通過配置各路由表的優(yōu)先級來解決。通常靜態(tài)路由具有默認的最高優(yōu)先級,當其它路由表表項與它矛盾時,均按靜態(tài)路由轉發(fā)。
4 路由算法
——路由算法在路由協(xié)議中起著至關重要的作用,采用何種算法往往決定了最終的尋徑結果,因此選擇路由算法一定要仔細。通常需要綜合考慮以下幾個設計目標:
——(1)最優(yōu)化:指路由算法選擇最佳路徑的能力。
——(2)簡潔性:算法設計簡潔,利用最少的軟件和開銷,提供最有效的功能。
——(3)堅固性:路由算法處于非正常或不可預料的環(huán)境時,如硬件故障、負載過高或操作失誤時,都能正確運行。由于路由器分布在網(wǎng)絡聯(lián)接點上,所以在它們出故障時會產(chǎn)生嚴重后果。最好的路由器算法通常能經(jīng)受時間的考驗,并在各種網(wǎng)絡環(huán)境下被證實是可靠的。
——(4)快速收斂:收斂是在最佳路徑的判斷上所有路由器達到一致的過程。當某個網(wǎng)絡事件引起路由可用或不可用時,路由器就發(fā)出更新信息。路由更新信息遍及整個網(wǎng)絡,引發(fā)重新計算最佳路徑,最終達到所有路由器一致公認的最佳路徑。收斂慢的路由算法會造成路徑循環(huán)或網(wǎng)絡中斷。
——(5)靈活性:路由算法可以快速、準確地適應各種網(wǎng)絡環(huán)境。例如,某個網(wǎng)段發(fā)生故障,路由算法要能很快發(fā)現(xiàn)故障,并為使用該網(wǎng)段的所有路由選擇另一條最佳路徑。
——路由算法按照種類可分為以下幾種:靜態(tài)和動態(tài)、單路和多路、平等和分級、源路由和透明路由、域內(nèi)和域間、鏈路狀態(tài)和距離向量。前面幾種的特點與字面意思基本一致,下面著重介紹鏈路狀態(tài)和距離向量算法。
——鏈路狀態(tài)算法(也稱最短路徑算法)發(fā)送路由信息到互聯(lián)網(wǎng)上所有的結點,然而對于每個路由器,僅發(fā)送它的路由表中描述了其自身鏈路狀態(tài)的那一部分。距離向量算法(也稱為Bellman-Ford算法)則要求每個路由器發(fā)送其路由表全部或部分信息,但僅發(fā)送到鄰近結點上。從本質(zhì)上來說,鏈路狀態(tài)算法將少量更新信息發(fā)送至網(wǎng)絡各處,而距離向量算法發(fā)送大量更新信息至鄰接路由器。
——由于鏈路狀態(tài)算法收斂更快,因此它在一定程度上比距離向量算法更不易產(chǎn)生路由循環(huán)。但另一方面,鏈路狀態(tài)算法要求比距離向量算法有更強的CPU能力和更多的內(nèi)存空間,因此鏈路狀態(tài)算法將會在實現(xiàn)時顯得更昂貴一些。除了這些區(qū)別,兩種算法在大多數(shù)環(huán)境下都能很好地運行。
——最后需要指出的是,路由算法使用了許多種不同的度量標準去決定最佳路徑。復雜的路由算法可能采用多種度量來選擇路由,通過一定的加權運算,將它們合并為單個的復合度量、再填入路由表中,作為尋徑的標準。通常所使用的度量有:路徑長度、可靠性、時延、帶寬、負載、通信成本等。
5 新一代路由器
——由于多媒體等應用在網(wǎng)絡中的發(fā)展,以及ATM、快速以太網(wǎng)等新技術的不斷采用,網(wǎng)絡的帶寬與速率飛速提高,傳統(tǒng)的路由器已不能滿足人們對路由器的性能要求。因為傳統(tǒng)路由器的分組轉發(fā)的設計與實現(xiàn)均基于軟件,在轉發(fā)過程中對分組的處理要經(jīng)過許多環(huán)節(jié),轉發(fā)過程復雜,使得分組轉發(fā)的速率較慢。另外,由于路由器是網(wǎng)絡互連的關鍵設備,是網(wǎng)絡與其它網(wǎng)絡進行通信的一個“關口”,對其安全性有很高的要求,因此路由器中各種附加的安全措施增加了CPU的負擔,這樣就使得路由器成為整個互聯(lián)網(wǎng)上的“瓶頸”。
——傳統(tǒng)的路由器在轉發(fā)每一個分組時,都要進行一系列的復雜操作,包括路由查找、訪問控制表匹配、地址解析、優(yōu)先級管理以及其它的附加操作。這一系列的操作大大影響了路由器的性能與效率,降低了分組轉發(fā)速率和轉發(fā)的吞吐量,增加了CPU的負擔。而經(jīng)過路由器的前后分組間的相關性很大,具有相同目的地址和源地址的分組往往連續(xù)到達,這為分組的快速轉發(fā)提供了實現(xiàn)的可能與依據(jù)。新一代路由器,如IP Switch、Tag Switch等,就是采用這一設計思想用硬件來實現(xiàn)快速轉發(fā),大大提高了路由器的性能與效率。
——新一代路由器使用轉發(fā)緩存來簡化分組的轉發(fā)操作。在快速轉發(fā)過程中,只需對一組具有相同目的地址和源地址的分組的前幾個分組進行傳統(tǒng)的路由轉發(fā)處理,并把成功轉發(fā)的分組的目的地址、源地址和下一網(wǎng)關地址(下一路由器地址)放人轉發(fā)緩存中。當其后的分組要進行轉發(fā)時,茵先查看轉發(fā)緩存,如果該分組的目的地址和源地址與轉發(fā)緩存中的匹配,則直接根據(jù)轉發(fā)緩存中的下一網(wǎng)關地址進行轉發(fā),而無須經(jīng)過傳統(tǒng)的復雜操作,大大減輕了路由器的負擔,達到了提高路由器吞吐量的目標。
相關概念辨析
低端和高端路由器的區(qū)別
“低端路由器和高端路由器都是差不多的用法,為什么價格會相差這么遠啊?”其實這個問題提得很不錯,不少不熟悉產(chǎn)品技術的朋友基本上都會類似的疑問——“為什么一樣的功能,這款路由器這么貴,另外一款又這么便宜”、“為什么思科的路由器這么貴?而TP-LINK的這么便宜?”、“這兩款路由器的主要參數(shù)都一樣,為什么性能卻相差這么遠?”
對于這些問題,我們都必須從路由器的基本原理談起。
路由器的工作原理在上文已經(jīng)介紹。
把網(wǎng)絡分段可以解決這些問題,但同時你必須提供一種機制使不同網(wǎng)段的計算機可以互相通信,就是促生了路由器這種設備:
路由器工作在IP協(xié)議網(wǎng)絡層,用于實現(xiàn)子網(wǎng)之間轉發(fā)數(shù)據(jù)。路由器一般都有多個網(wǎng)絡接口,包括局域的網(wǎng)絡接口和廣域的網(wǎng)絡接口。每個網(wǎng)絡接口連接不同的網(wǎng)絡,路由器中記錄有每個網(wǎng)絡端口相連的網(wǎng)絡信息。同時路由器中還保存有一張路由表,它記錄有去往不同網(wǎng)絡地址應送往的端口號。Internet用戶使用的各種信息服務,其通訊的信息最終均可以歸結為以IP包為單位的信息傳送,IP包除了包括要傳送的數(shù)據(jù)信息外,還包含有信息要發(fā)送到的目的IP地址、信息發(fā)送的源IP地址、以及一些相關的控制信息。當一臺路由器收到一個IP數(shù)據(jù)包時,它將根據(jù)數(shù)據(jù)包中的目的IP地址項查找路由表,根據(jù)查找的結果將此IP數(shù)據(jù)包送往對應端口。下一臺IP路由器收到此數(shù)據(jù)包后繼續(xù)轉發(fā),直至發(fā)到目的地。路由器之間可以通過路由協(xié)議來進行路由信息的交換,從而更新路由表。
影響路由器性能的因素
經(jīng)過上面的介紹,也許大家還是不怎么了解路由器的工作情況,其實沒關系,這個也不是我們的目的,我們主要還是為了跟大家說明,路由器的工作原理決定了它必須使用芯片來完成一些必要的判斷和數(shù)據(jù)包的轉發(fā),而這個工作是交由一個處理器來完成,各種有待處理或者處理好的數(shù)據(jù)包則存在內(nèi)存里面,因此,處理器的工作頻率和內(nèi)存容量很大程度上決定著一款路由器的性能。
但是,路由器的性能也不能完全看處理器頻率和內(nèi)存容量,處理器用得差路由器性能好不了,但反過來處理器好了路由器性能卻不一定好;處理器主頻只是處理器的一個性能指標,其總線寬度(16位還是32位)、Cache容量和結構、內(nèi)部總線結構、是單CPU還是多CPU分布式處理、運算模式等指標,都會影響處理器性能。幾乎所有路由器采用的都是通信專業(yè)RISC CPU,所以“采用通信專業(yè)RISC CPU”相當于什么都沒說,關鍵要看這顆CPU到底用的是什么內(nèi)核,內(nèi)部結構如何。內(nèi)存也是一樣,內(nèi)存容量大小并不決定一切,如果負載不大,那么4M的內(nèi)存和8M的內(nèi)存在使用時也許效果并不會有多大區(qū)別,所以根據(jù)內(nèi)存的大小來絕對評判路由器性能并不科學(當然內(nèi)存容量大還是有好處)。
決定路由器檔次的指標
雖然上面已經(jīng)說了,處理器和內(nèi)存很大程度決定路由器性能,不過,決定一款路由器檔次的指標卻不是它們,這也是為什么在產(chǎn)品的主要參數(shù)中經(jīng)常看不到有標出這兩個參數(shù),那么一般是用什么來衡量一個路由器的檔次呢?一種說法就是負載能力,通俗一點也叫帶機數(shù)量。不過,帶機數(shù)量并不是一個標準化的數(shù)據(jù)量,它要根據(jù)實際的使用情況來衡量,例如網(wǎng)吧里所有人都在埋頭上網(wǎng)聊天、游戲,而且?guī)缀跛袛?shù)據(jù)都通過路由器WAN口,所以負載很重;但如果是一個企業(yè)網(wǎng),大部分人都在忙著搞設計、寫報告、做計劃,同一時間只有小部分人在用網(wǎng)絡,而且大部分數(shù)據(jù)都是在企業(yè)網(wǎng)內(nèi)部流動,所以路由器負載很輕,那就可以同時負載比較多的客戶端。如果是說最大負載253臺,那就沒什么意義了,因為DHCP最大可以分配的IP 地址數(shù)是254個,減掉路由器自己用掉的一個就是253個,這種不能稱為指標,基本上是在唬人。所以,我們要看一款路由器的實際負載能力,而不是理論負載能力。
由于負載能力存在諸多不確定因素和欺騙性質(zhì),所以,另外一個指標也頗受關注,那就是吞吐量。吞吐量是指路由器每秒能處理的數(shù)據(jù)量,這個參數(shù)是指LAN-to-WAN的吞吐量,其測量結果應是在NAT開啟,防火墻關閉的情況下,分別用 Smartbits和Chariot兩種測試方式分別進行。用Smartbits方式時,比較64Byte小包測試數(shù)據(jù),高下立判; Chariot測試最好是在多連接下進行,一般可以選擇100對連接基本上就可以看出產(chǎn)品間的區(qū)別。
影響路由器價格的原因
經(jīng)過上面的論述,最后終于可以回歸到我們要回答的問題:為什么不同路由器之間價格區(qū)別這么大?
主要原因:
1.性能不同,性能強勁的路由器內(nèi)置強悍的處理器和大容量內(nèi)存,因此成本比較高。
2.應用不同,性能強勁的路由器可以用于更多負載的網(wǎng)絡,而低端路由器吃不消。
3.功能不同,雖然基本功能一樣,但是一些路由器還內(nèi)置了其他比較實用的功能,像專業(yè)防火墻功能、VPN這些,因此技術要求較高,價格自然也會跟著提高。
路由器與交換機的區(qū)別
傳統(tǒng)交換機從網(wǎng)橋發(fā)展而來,屬于OSI第二層即數(shù)據(jù)鏈路層設備。它根據(jù)MAC地址尋址,通過站表選擇路由,站表的建立和維護由交換機自動進行。路由器屬于OSI第三層即網(wǎng)絡層設備,它根據(jù)IP地址進行尋址,通過路由表路由協(xié)議產(chǎn)生。交換機最大的好處是快速,由于交換機只須識別幀中MAC地址,直接根據(jù)MAC地址產(chǎn)生選擇轉發(fā)端口算法簡單,便于ASIC實現(xiàn),因此轉發(fā)速度極高。但交換機的工作機制也帶來一些問題。
1.回路:根據(jù)交換機地址學習和站表建立算法,交換機之間不允許存在回路。一旦存在回路,必須啟動生成樹算法,阻塞掉產(chǎn)生回路的端口。而路由器的路由協(xié)議沒有這個問題,路由器之間可以有多條通路來平衡負載,提高可靠性。
2.負載集中:交換機之間只能有一條通路,使得信息集中在一條通信鏈路上,不能進行動態(tài)分配,以平衡負載。而路由器的路由協(xié)議算法可以避免這一點,OSPF路由協(xié)議算法不但能產(chǎn)生多條路由,而且能為不同的網(wǎng)絡應用選擇各自不同的最佳路由。
3.廣播控制:交換機只能縮小沖突域,而不能縮小廣播域。整個交換式網(wǎng)絡就是一個大的廣播域,廣播報文散到整個交換式網(wǎng)絡。而路由器可以隔離廣播域,廣播報文不能通過路由器繼續(xù)進行廣播。
4.子網(wǎng)劃分:交換機只能識別MAC地址。MAC地址是物理地址,而且采用平坦的地址結構,因此不能根據(jù)MAC地址來劃分子網(wǎng)。而路由器識別IP地址,IP地址由網(wǎng)絡管理員分配,是邏輯地址且IP地址具有層次結構,被劃分成網(wǎng)絡號和主機號,可以非常方便地用于劃分子網(wǎng),路由器的主要功能就是用于連接不同的網(wǎng)絡。
5.保密問題:雖說交換機也可以根據(jù)幀的源MAC地址、目的MAC地址和其他幀中內(nèi)容對幀實施過濾,但路由器根據(jù)報文的源IP地址、目的IP地址、TCP端口地址等內(nèi)容對報文實施過濾,更加直觀方便。
6.介質(zhì)相關:交換機作為橋接設備也能完成不同鏈路層和物理層之間的轉換,但這種轉換過程比較復雜,不適合ASIC實現(xiàn),勢必降低交換機的轉發(fā)速度。因此目前交換機主要完成相同或相似物理介質(zhì)和鏈路協(xié)議的網(wǎng)絡互連,而不會用來在物理介質(zhì)和鏈路層協(xié)議相差甚遠的網(wǎng)絡之間進行互連。而路由器則不同,它主要用于不同網(wǎng)絡之間互連,因此能連接不同物理介質(zhì)、鏈路層協(xié)議和網(wǎng)絡層協(xié)議的網(wǎng)絡。路由器在功能上雖然占據(jù)了優(yōu)勢,但價格昂貴,報文轉發(fā)速度低。
無線路由器與無線AP的區(qū)別
以功能區(qū)分無線AP與無線路由
無線路由器:無線路由器是單純型AP與寬帶路由器的一種結合體;它借助于路由器功能,可實現(xiàn)家庭無線網(wǎng)絡中的Internet連接共享,實現(xiàn)ADSL和小區(qū)寬帶的無線共享接入 ,另外,無線路由器可以把通過它進行無線和有線連接的終端都分配到一個子網(wǎng),這樣子網(wǎng)內(nèi)的各種設備交換數(shù)據(jù)就非常方便。
可以這樣說,無線路由器就是AP、路由功能和交換機的集合體,支持有線無線組成同一子網(wǎng),直接接上MODEM。而無線AP相當于一個無線交換機,接在有線交換機或路由器上,為跟它連接的無線網(wǎng)卡從路由器那里分得IP。
以應用區(qū)分無線AP與無線路由
獨立的AP在那些需要大量AP來進行大面積覆蓋的公司使用得比較多,所有AP通過以太網(wǎng)連接起來并連到獨立的無線局域網(wǎng)防火墻。
無線路由器在SOHO的環(huán)境中使用得比較多,在這種環(huán)境下,一個AP就足夠了。這樣的話,整合了寬帶接入路由器和AP的無線路由器就提供了單個機器的解決方案,它比起兩個分開的機器的方案要容易管理和便宜一些。
無線路由器一般包括了網(wǎng)絡地址轉換(NAT)協(xié)議,以支持無線局域網(wǎng)用戶的網(wǎng)絡連接共享--這是SOHO環(huán)境中很好用的一個功能。它們也可能有基本的防火墻或者信息包過濾器來防止端口掃描軟件和其他針對寬帶連接的攻擊。最后,大多數(shù)無線路由器包括一個四個端口的以太網(wǎng)轉換器,可以連接幾臺有線的PC。這對于管理路由器或者把一臺打印機連上局域網(wǎng)來說非常方便。
以組網(wǎng)拓撲圖分析無線AP與無線路由
AP不能直接跟ADSL MODEM相連,所以在使用時必須再添加一臺交換機或者集線器;
使用上面的拓撲架構時,AP和無線路由的用法是一樣的。不過,大部分無線路由器由于具有寬帶撥號的能力,因此可以直接跟ADSL MODEM連接進行寬帶共享:
以成本來分析無線AP與無線路由
802.11B的無線AP和無線路由器的價錢相差不多, 一般無線路由器會貴100元左右;802.11G則要看具體情況而言,根據(jù)品牌和附加功能的不同兩者價格會有幾百元不等的差距,不過便宜的產(chǎn)品差價也是100多元。
無線路由器的標準
美國電氣和電子工程師協(xié)會(Institute of Electrical and Electronics Engineers,IEEE)于2009.9.14正式批準了最新的Wi-Fi無線標準802.11n。
理論上講,802.11n可以達到300Mbps的傳輸速率,這是802.11g標準的6倍,802.11b標準的30倍。
施工、安裝要點
具體施工做法參見國家建筑標準設計圖集《智能家居控制系統(tǒng)施工圖集 03X602》及國際標準規(guī)范 《EIA/TIA569 商務樓通信通道和空間標準》。
非常好我支持^.^
(0) 0%
不好我反對
(0) 0%
相關閱讀:
- [電子說] 環(huán)旭電子推出Pisces企業(yè)級無線路由器助力企業(yè)應對高密度數(shù)據(jù)挑戰(zhàn) 2023-10-24
- [電子說] 拆機看看華為路由器的天線與濾波器 2023-10-24
- [電子說] 工業(yè)路由器一般都用哪種協(xié)議? 2023-10-24
- [電子說] SR-MPLS是什么?SR-MPLS的實際應用 2023-10-23
- [移動通信] 如何解決局域網(wǎng)ip地址不夠用問題? 2023-10-23
- [電子說] CPE一般支持哪些工作模式?與MIFI相比,優(yōu)勢在哪里? 2023-10-22
- [電子說] Ai-WB2模組HTTP客戶端HEAD和GET請求方法 2023-10-21
- [電子說] 中興晴天墻面路由器喜獲2023年GMARK設計大獎 2023-10-20
( 發(fā)表人:admin )