女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

您好,歡迎來電子發燒友網! ,新用戶?[免費注冊]

您的位置:電子發燒友網>源碼下載>數值算法/人工智能>

自適應噪聲估計特性的字典學習去噪算法

大?。?/span>1.23 MB 人氣: 2017-12-08 需要積分:1

  高光譜圖像各波段圖像噪聲分布復雜,傳統去噪方法難以達到理想效果。針對這一問題,在主成分分析(PCA)的基礎上,結合噪聲估計和字典學習,提出一種新的高光譜去噪方法。首先,對原始高光譜數據進行主成分變換得到一組主成分圖像并根據能量比重將其劃分為清晰圖像組和含噪圖像組;然后,根據任一波段圖像的信息,利用奇異值分解(SVD)對圖像進行噪聲估計,再將得到的噪聲估計方法與K-SVD字典學習去噪算法結合,提出一種具備自適應噪聲估計特性的字典學習去噪算法,并將其應用于信息量較小的含噪圖像組進行去噪處理;最后,按各主成分圖像對應的信息量比例進行加權融合得到最終的去噪圖像。通過對模擬與實際高光譜遙感圖像的實驗表明,與PCA、PCA-Bish、PCA-Contourlet三種去噪方法相比,所提方法去噪后圖像的峰值信噪比(PSNR)可以提升1-3 dB,且具有更多的細節信息和更好的視覺效果。

自適應噪聲估計特性的字典學習去噪算法

非常好我支持^.^

(0) 0%

不好我反對

(0) 0%

      發表評論

      用戶評論
      評價:好評中評差評

      發表評論,獲取積分! 請遵守相關規定!

      ?
      主站蜘蛛池模板: 依兰县| 平泉县| 荥经县| 永济市| 建阳市| 万山特区| 遂昌县| 平远县| 紫云| 汤原县| 天柱县| 长汀县| 柳河县| 舟山市| 仁寿县| 晴隆县| 精河县| 库车县| 岑巩县| 郓城县| 石狮市| 南汇区| 牙克石市| 信丰县| 旅游| 三原县| 德昌县| 梅州市| 上饶市| 遵化市| 古浪县| 正安县| 霸州市| 册亨县| 永年县| 黎川县| 安岳县| 尚义县| 江山市| 黄陵县| 卢湾区|