女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

多光子顯微鏡成像技術:用于體內(nèi)神經(jīng)元成像的多種技術

電子設計 ? 來源:電子設計 ? 作者:電子設計 ? 2020-12-26 03:19 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

與傳統(tǒng)的單光子寬視野熒光顯微鏡相比,多光子顯微鏡(MPM)具有光學切片和深層成像等功能,這兩個優(yōu)勢極大地促進了研究者們對于完整活體大腦深處神經(jīng)的了解與認識。2019年,Jerome Lecoq等人從大腦深處的神經(jīng)元成像、大量神經(jīng)元成像、高速神經(jīng)元成像這三個方面論述了相關的MPM技術[1]。

想要將神經(jīng)元活動與復雜行為聯(lián)系起來,通常需要對大腦皮質深層的神經(jīng)元進行成像,這就要求MPM具有深層成像的能力。激發(fā)和發(fā)射光會被生物組織高度散射和吸收是限制MPM成像深度的主要因素,雖然可以通過增加激光強度來解決散射問題,但這會帶來其他問題,例如燒壞樣品、離焦和近表面熒光激發(fā)。增加MPM成像深度最好的方法是用更長的波長作為激發(fā)光。

另外,對于雙光子(2P)成像而言,離焦和近表面熒光激發(fā)是兩個最大的深度限制因素,而對于三光子(3P)成像這兩個問題大大減小,但是三光子成像由于熒光團的吸收截面比2P要小得多,所以需要更高數(shù)量級的脈沖能量才能獲得與2P激發(fā)的相同強度的熒光信號。功能性3P顯微鏡比結構性3P顯微鏡的要求更高,它需要更快速的掃描,以便及時采樣神經(jīng)元活動;需要更高的脈沖能量,以便在每個像素停留時間內(nèi)收集足夠的信號。

復雜的行為通常涉及到大型的大腦神經(jīng)網(wǎng)絡,該網(wǎng)絡既具有局部的連接又具有遠程的連接。要想將神經(jīng)元活動與行為聯(lián)系起來,需要同時監(jiān)控非常龐大且分布廣泛的神經(jīng)元的活動,大腦中的神經(jīng)網(wǎng)絡會在幾十毫秒內(nèi)處理傳入的刺激,要想了解這種快速的神經(jīng)元動力學,就需要MPM具備對神經(jīng)元進行快速成像的能力。快速MPM方法可分為單束掃描技術和多束掃描技術。

單束掃描技術可以高速遍歷大視場(FOV)的神經(jīng)組織

使用MPM對神經(jīng)元進行成像時,通過隨機訪問掃描—即激光束在整個視場上的任意選定點上進行快速掃描—可以只掃描感興趣的神經(jīng)元,這樣不僅避免掃描到任何未標記的神經(jīng)纖維,還可以優(yōu)化激光束的掃描時間。隨機訪問掃描(圖1)可以通過聲光偏轉器(AOD)來實現(xiàn),其原理是將具有一個射頻信號的壓電傳感器粘在合適的晶體上,所產(chǎn)生的聲波引起周期性的折射率光柵,激光束通過光柵時發(fā)生衍射。通過射頻電信號調控聲波的強度和頻率從而可以改變衍射光的強度和方向,這樣使用1個AOD就可以實現(xiàn)一維橫向的任意點掃描,利用1對AOD,結合其他軸向掃描技術可實現(xiàn)3D的隨機訪問掃描。但是該技術對樣本的運動很敏感,易出現(xiàn)運動偽影。目前,快速光柵掃描即在FOV中進行逐行掃描,由于利用算法可以輕松解決運動偽影而被廣泛的使用。

圖1 基于AOD的體內(nèi)新皮層L2 / 3神經(jīng)元的雙光子成像[2]

快速光柵掃描有多種實現(xiàn)方式,使用振鏡進行快速2D掃描,將振鏡和可調電動透鏡結合在一起進行快速3D掃描,但可調電動透鏡由于機械慣性的限制在軸向無法快速進行焦點切換,影響成像速度,現(xiàn)可使用空間光調制器(SLM)代替。

遠程聚焦也是一種實現(xiàn)3D成像的手段,如圖2所示。在LSU模塊中,掃描振鏡進行橫向掃描, ASU模塊包括物鏡L1和反射鏡M,通過調控M的位置實現(xiàn)軸向掃描。該技術不僅可以校正主物鏡L2引入的光學像差,還可以進行快速的軸向掃描。想要獲得更多神經(jīng)元成像,可以通過調整顯微鏡的物鏡設計來擴大FOV,但是具有大NA和大FOV的物鏡通常重量較大,無法快速移動以進行快速軸向掃描,因此大型FOV系統(tǒng)依賴于遠程聚焦、SLM和可調電動透鏡。

圖2 遠程聚焦雙光子成像系統(tǒng)的示意圖[3]多束掃描技術可以同時對神經(jīng)元組織的不同位置進行成像

該技術如圖3所示。對兩個遠距離(相距大于1-2 mm)的成像部位,通常使用兩條獨立的路徑進行成像(圖3C,D);對于相鄰區(qū)域,通常使用單個物鏡的多光束進行成像(圖3E,F)。多光束掃描技術必須特別注意激發(fā)光束之間的串擾問題,這個問題可以通過事后光源分離方法或時空復用方法來解決。事后光源分離方法指的是用算法來分離光束消除串擾;時空復用方法指的是同時使用多個激發(fā)光束,每個光束的脈沖在時間上延遲,這樣就可以暫時分離被不同光束激發(fā)的單個熒光信號。引入越多路光束就可以對越多的神經(jīng)元進行成像,但是多路光束會導致熒光衰減時間的重疊增加,從而限制了區(qū)分信號源的能力;并且多路復用對電子設備的工作速率有很高的要求;大量的光束也需要更高的激光功率來維持近似單光束的信噪比,這會容易導致組織損傷。

圖3 大面積成像技術

近年來,不同的MPM技術的發(fā)展拓寬了我們對神經(jīng)組織的成像范圍,使得我們可以以更快的速度對大腦深處更多的神經(jīng)元進行成像,這大大推動了神經(jīng)科學的研究,使我們能夠對腦功能有更清晰的理解。

審核編輯:符乾江


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 成像技術
    +關注

    關注

    4

    文章

    303

    瀏覽量

    31786
  • 顯微鏡
    +關注

    關注

    0

    文章

    616

    瀏覽量

    24150
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    VirtualLab Fusion應用:具有高數(shù)值孔徑的反射顯微鏡系統(tǒng)

    摘要 在單分子顯微成像應用中,定位精度是一個關鍵問題。由于某一方向上的定位精度與該方向上圖像的點擴散函數(shù)(PSF)的寬度成正比,因此具有更高數(shù)值孔徑(NA)的顯微鏡可以減小PSF的寬度,從而
    發(fā)表于 06-05 08:49

    VirtualLab Fusion應用:用于高NA顯微鏡成像的工程化PSF

    用于3D成像顯微鏡的雙螺旋PSF 在VirtualLab Fusion中,通過在高NA顯微鏡系統(tǒng)的光瞳平面中插入相位掩模,以簡單快捷的方式分析雙螺旋PSF。 結果表明,即使只有一
    發(fā)表于 03-26 08:47

    AXON 激光器照亮活體雙光子成像技術之路

    致力于開發(fā)世界上規(guī)模緊湊且兼具成本效益的飛秒激光模塊,并在其中集成雙光子顯微鏡系統(tǒng),用于活體成像。 具體來說,目標是提供適合非專家用戶的系統(tǒng),其成像
    的頭像 發(fā)表于 03-11 06:21 ?311次閱讀
    AXON 激光器照亮活體雙<b class='flag-5'>光子</b><b class='flag-5'>成像</b><b class='flag-5'>技術</b>之路

    ?超景深3D檢測顯微鏡技術解析

    顯微鏡在觀察高縱深樣本時,往往難以同時保持所有層面的清晰度,而上海桐爾的技術通過精密的光學系統(tǒng)設計和焦點成像技術,能夠在不同深度上捕捉到高
    發(fā)表于 02-25 10:51

    VirtualLab Fusion案例:單分子顯微鏡高NA成像系統(tǒng)的建模

    隨著生物和化學領域新技術的出現(xiàn),對更精確顯微鏡的需求穩(wěn)步增加。因此,研制出觀察單個熒光分子的單分子顯微鏡。利用快速物理光學建模和設計軟件VirtualLab Fusion,我們可以模擬普遍用于
    發(fā)表于 01-16 09:52

    VirtualLab Fusion案例:高NA反射顯微鏡系統(tǒng)

    摘要 在單分子顯微鏡成像應用中,定位精度是一個關鍵問題。由于在某一方向上的定位精度與圖像在同一方向上的點擴散函數(shù)(point spread function, PSF)的寬度成正比,因此具有較高
    發(fā)表于 01-16 09:50

    VirtualLab Fusion案例:高NA傅里葉單分子成像顯微鏡

    1.摘要 傅里葉顯微術廣泛應用于單分子成像、表面等離子體觀測、光子晶體成像等領域。它使直接觀察空間頻率分布成為可能。在高NA傅里葉
    發(fā)表于 01-15 09:39

    VirtualLab Fusion應用:具有高數(shù)值孔徑的反射顯微鏡系統(tǒng)

    摘要 在單分子顯微成像應用中,定位精度是一個關鍵問題。由于某一方向上的定位精度與該方向上圖像的點擴散函數(shù)(PSF)的寬度成正比,因此具有更高數(shù)值孔徑(NA)的顯微鏡可以減小PSF的寬度,從而
    發(fā)表于 01-02 16:45

    壓電納米運動技術在“超級顯微鏡”中的應用

    和分析,為醫(yī)療、生物、材料和化學等領域的研究提供更加先進和高效的實驗儀器。 隨著對顯微成像技術的深入探索,介觀活體顯微儀器問世,這種顯微儀器
    的頭像 發(fā)表于 01-02 10:06 ?443次閱讀
    壓電納米運動<b class='flag-5'>技術</b>在“超級<b class='flag-5'>顯微鏡</b>”中的應用

    傅里葉光場顯微成像技術—2D顯微鏡實現(xiàn)3D成像

    近年來,光場顯微技術的應用越來越廣泛,針對光場顯微鏡的改進和優(yōu)化也不斷出現(xiàn)。目前市場各大品牌的2D顯微鏡比比皆是,如何在其基礎上實現(xiàn)三維成像
    的頭像 發(fā)表于 10-31 08:05 ?824次閱讀
    傅里葉光場<b class='flag-5'>顯微</b><b class='flag-5'>成像</b><b class='flag-5'>技術</b>—2D<b class='flag-5'>顯微鏡</b>實現(xiàn)3D<b class='flag-5'>成像</b>

    分析共聚焦激光顯微鏡成像的常見問題

    共聚焦激光顯微鏡(CLSM)因其高分辨率和三維成像能力而在生物醫(yī)學研究中被廣泛使用。然而,在使用過程中,研究人員可能會遇到各種技術挑戰(zhàn)。 一、樣品制備問題 1. 樣品厚度 共聚焦顯微鏡
    的頭像 發(fā)表于 10-30 09:45 ?1565次閱讀

    共聚焦激光顯微鏡對比超分辨顯微鏡

    顯微鏡技術的發(fā)展極大地推動了科學研究的進步,尤其是在細胞生物學和納米科學領域。共聚焦激光顯微鏡(CLSM)和超分辨顯微鏡作為兩種重要的顯微
    的頭像 發(fā)表于 10-30 09:42 ?1471次閱讀

    共聚焦激光顯微鏡的光學系統(tǒng)解析

    。 引言 共聚焦激光顯微鏡是一種廣泛應用于生物醫(yī)學、材料科學和納米技術等領域的顯微成像技術。它通
    的頭像 發(fā)表于 10-30 09:40 ?1304次閱讀

    什么是散射成像技術?

    的發(fā)展,而且在解決散射成像方面表現(xiàn)出了得天獨厚的優(yōu)勢。 在彈道光提取方面,自適應光學成像技術、光學相干層析技術、共聚焦顯微
    的頭像 發(fā)表于 08-23 06:25 ?562次閱讀
    什么是散射<b class='flag-5'>成像</b><b class='flag-5'>技術</b>?

    具有非常高數(shù)值孔徑的反射顯微鏡系統(tǒng)

    摘要 在單分子顯微鏡成像應用中,定位精度是一個關鍵問題。由于在某一方向上的定位精度與圖像在同一方向上的點擴散函數(shù)(point spread function, PSF)的寬度成正比,因此具有較高
    發(fā)表于 08-14 11:52
    主站蜘蛛池模板: 阿拉善盟| 桐梓县| 大理市| 祁连县| 迁西县| 高陵县| 嫩江县| 清丰县| 沁水县| 尉氏县| 桂平市| 广河县| 敦化市| 花垣县| 札达县| 山阳县| 巴塘县| 石首市| 衡阳县| 琼海市| 拉萨市| 浏阳市| 德庆县| 广宁县| 镇江市| 锡林郭勒盟| 北碚区| 萍乡市| 滨海县| 鄂伦春自治旗| 贺州市| 崇阳县| 中阳县| 仲巴县| 方城县| 砀山县| 金秀| 崇文区| 全州县| 金乡县| 华安县|