女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡(luò)是怎樣實(shí)現(xiàn)不變性特征提取的?

新機(jī)器視覺(jué) ? 來(lái)源:OpenCV學(xué)堂 ? 作者:OpenCV學(xué)堂 ? 2021-04-30 09:11 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

圖像特征

傳統(tǒng)的圖像特征提?。ㄌ卣鞴こ蹋┲饕腔诟鞣N先驗(yàn)?zāi)P?,通過(guò)提取圖像關(guān)鍵點(diǎn)、生成描述子特征數(shù)據(jù)、進(jìn)行數(shù)據(jù)匹配或者機(jī)器學(xué)習(xí)方法對(duì)特征數(shù)據(jù)二分類(lèi)/多分類(lèi)實(shí)現(xiàn)圖像的對(duì)象檢測(cè)與識(shí)別。卷積神經(jīng)網(wǎng)絡(luò)通過(guò)計(jì)算機(jī)自動(dòng)提取特征(表示工程)實(shí)現(xiàn)圖像特征的提取與抽象,通過(guò)MLP實(shí)現(xiàn)數(shù)據(jù)的回歸與分類(lèi)。二者提取的特征數(shù)據(jù)都具不變性特征。

f71e58ea-a929-11eb-9728-12bb97331649.jpg

卷積神經(jīng)網(wǎng)絡(luò)為什么能提取到圖像特征,其關(guān)鍵在于卷積神經(jīng)網(wǎng)絡(luò)有兩種不同類(lèi)型的層

-卷積層(convolution layers/detection layers)

-池化層(pooling layers)

卷積層

卷積層是一系列濾波器集合(filters set)、它的輸出結(jié)果被稱(chēng)為特征映射(feature maps),每個(gè)feature map都一個(gè)filter在圖像上卷積得到的輸出。一般情況下都會(huì)輸出結(jié)果加線(xiàn)性修正,對(duì)卷積層常用就是ReLU

f72949da-a929-11eb-9728-12bb97331649.png

這樣做的好處是:

卷積是一個(gè)線(xiàn)性操作,我們需要一個(gè)非線(xiàn)性組合,否則兩個(gè)卷積卷積層還不如一個(gè)卷積層

兩個(gè)相反方向的邊緣不應(yīng)該被取消

使圖像梯度值更加的稀疏、有助于提高反向傳播的效果

假設(shè)灰度輸入圖像,有兩個(gè)filter,卷積層生成過(guò)程如下所示:

假設(shè)灰度輸入圖像,有兩個(gè)filter,卷積層生成過(guò)程如下所示:

f7332e50-a929-11eb-9728-12bb97331649.jpg

膨脹卷積

通常我們常見(jiàn)的卷積層操作使用的filter都是基于連續(xù)鄰近像素的,除了這種卷積filter之后另外還有一張卷積filter被稱(chēng)為膨脹卷積,其算子的分布更加的稀疏,圖示如下:

f73ee704-a929-11eb-9728-12bb97331649.jpg

膨脹卷積在不增加網(wǎng)絡(luò)總參數(shù)的情況下,提升每個(gè)感受野的尺度大小。

1x1卷積

1x1的卷積首次使用是在Network In Network網(wǎng)絡(luò)模型中,后來(lái)受到越來(lái)越多的關(guān)注,在一般情況下我們的卷積是2D的,1x1的卷積操作是毫無(wú)意義的,但是對(duì)卷積神經(jīng)網(wǎng)絡(luò)來(lái)說(shuō),它的卷積層是三維的,所以1x1的卷積操作是有意義的。

f77ec374-a929-11eb-9728-12bb97331649.jpg

卷積層大小計(jì)算

對(duì)于一個(gè)輸入大小WxW的feature map,假設(shè)Filter的大小位FxF,卷積時(shí)填充邊緣P個(gè)像素、卷積步長(zhǎng)(stride)為S則輸出的大小為:

f7a9c042-a929-11eb-9728-12bb97331649.png

在多數(shù)深度學(xué)習(xí)框架中支持兩種輸出大小計(jì)算:

padding = “same”

意味著使用填充邊緣的方式,輸出大小與輸入的feature map大小保持不變

padding = “valid”

意味著不使用邊緣填充,即P=0此時(shí)輸出大小為:

f7b36d4a-a929-11eb-9728-12bb97331649.png

池化層

在卷積層提取到的特征數(shù)據(jù)不具備空間不變性(尺度與遷移不變性特征),只有通過(guò)了池化層之后才會(huì)具備空間不變性特征。池化層是針對(duì)每個(gè)feature map進(jìn)行池化操作,池化操作的窗口大小可以指定為任意尺寸,主要有兩種類(lèi)型的池化操作

-下采樣池化(均值池化)

-最大值池化

下采樣池化

f7cb92e4-a929-11eb-9728-12bb97331649.png

對(duì)每個(gè)窗口大小取均值,然后乘以標(biāo)量beta加上我們?cè)鲆嫫胋的輸出

最大值池化

f7d574e4-a929-11eb-9728-12bb97331649.png

無(wú)論是選擇哪種池化方式都會(huì)輸出一個(gè)新低分辨率feature map,多數(shù)時(shí)候這個(gè)過(guò)程中會(huì)包含一定的信息損失,所以卷積神經(jīng)網(wǎng)絡(luò)一般通過(guò)擴(kuò)展深度(增加feature map的數(shù)量)來(lái)補(bǔ)償。

重疊窗口與稀疏窗口

在進(jìn)行池化的時(shí)候我們?nèi)绻x擇步長(zhǎng)=1進(jìn)行池化,通過(guò)這樣的池化方式輸出的結(jié)果我們稱(chēng)為重疊池化輸出,它不利于特征的稀疏生成,重疊窗口池化與均值池化都有這樣的缺點(diǎn),所以經(jīng)常采樣的是最大值池化,同時(shí)不會(huì)進(jìn)行窗口重疊,有實(shí)驗(yàn)結(jié)果表明,在卷積層保持相同feature map與參數(shù)的情況下,最大值池化的結(jié)果明顯優(yōu)于重疊池化與均值池化,而且網(wǎng)絡(luò)的深度越深,兩者之間的準(zhǔn)確度差異越大。

總結(jié)

最終卷積神經(jīng)網(wǎng)絡(luò)經(jīng)過(guò)池化層操作對(duì)單位像素遷移和亮度影響進(jìn)行了校正,做到了圖像的遷移與亮度不變性的特征提取、而且在池化過(guò)程中通過(guò)不斷的降低圖像分辨率,構(gòu)建了圖像的多尺度特征,所以還具備尺度空間不變性,完成了圖像不變性特征提取工作。

f7e0128c-a929-11eb-9728-12bb97331649.jpg

編輯:jq

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 濾波器
    +關(guān)注

    關(guān)注

    162

    文章

    8131

    瀏覽量

    181861
  • 圖像
    +關(guān)注

    關(guān)注

    2

    文章

    1094

    瀏覽量

    41196
  • 卷積神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    4

    文章

    369

    瀏覽量

    12285

原文標(biāo)題:卷積神經(jīng)網(wǎng)絡(luò)是如何實(shí)現(xiàn)不變性特征提取的

文章出處:【微信號(hào):vision263com,微信公眾號(hào):新機(jī)器視覺(jué)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋
    的頭像 發(fā)表于 02-12 15:53 ?636次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡(luò)因其在圖像和視頻處理任務(wù)中的卓越性能而廣受歡迎。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,多種實(shí)現(xiàn)工具和框架應(yīng)運(yùn)而生,為研究人員和開(kāi)發(fā)者提供了強(qiáng)大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?653次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)在自然語(yǔ)言處理中的應(yīng)用

    。 卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)是一種前饋神經(jīng)網(wǎng)絡(luò),它通過(guò)卷積層來(lái)
    的頭像 發(fā)表于 11-15 14:58 ?784次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識(shí)別、自然語(yǔ)言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見(jiàn)的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?1830次閱讀

    深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)模型

    卷積神經(jīng)網(wǎng)絡(luò)是一種前饋神經(jīng)網(wǎng)絡(luò),其靈感來(lái)源于生物的視覺(jué)皮層機(jī)制。它通過(guò)模擬人類(lèi)視覺(jué)系統(tǒng)的處理方式,能夠自動(dòng)提取圖像特征,從而在圖像識(shí)別和分
    的頭像 發(fā)表于 11-15 14:52 ?826次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    ),是深度學(xué)習(xí)的代表算法之一。 一、基本原理 卷積運(yùn)算 卷積運(yùn)算是卷積神經(jīng)網(wǎng)絡(luò)的核心,用于提取圖像中的局部
    的頭像 發(fā)表于 11-15 14:47 ?1760次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    隨著人工智能(AI)技術(shù)的快速發(fā)展,AI可以越來(lái)越多地支持以前無(wú)法實(shí)現(xiàn)或者難以實(shí)現(xiàn)的應(yīng)用。本文基于此解釋了 卷積神經(jīng)網(wǎng)絡(luò) (CNN)及其對(duì)人工智能和機(jī)器學(xué)習(xí)的意義。CNN是一種能夠從
    發(fā)表于 10-24 13:56

    卷積神經(jīng)網(wǎng)絡(luò)共包括哪些層級(jí)

    變換等復(fù)雜計(jì)算處理,從原始數(shù)據(jù)中提取并學(xué)習(xí)特征,最終完成分類(lèi)、回歸等任務(wù)。下面將詳細(xì)闡述卷積神經(jīng)網(wǎng)絡(luò)所包含的層級(jí)。
    的頭像 發(fā)表于 07-11 15:58 ?2811次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)通常用來(lái)處理什么

    感知、權(quán)重共享(或特征共享)以及空間或時(shí)間上的下采樣(池化),來(lái)有效地從原始像素?cái)?shù)據(jù)中自動(dòng)提取高層次的特征表示。 具體來(lái)說(shuō),卷積神經(jīng)網(wǎng)絡(luò)在以
    的頭像 發(fā)表于 07-11 14:51 ?1538次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用場(chǎng)景及優(yōu)缺點(diǎn)

    1.1 卷積神經(jīng)網(wǎng)絡(luò)的定義 卷積神經(jīng)網(wǎng)絡(luò)是一種深度學(xué)習(xí)模型,它通過(guò)模擬人類(lèi)視覺(jué)系統(tǒng)的工作方式,對(duì)輸入數(shù)據(jù)進(jìn)行特征提取和分類(lèi)。與傳統(tǒng)的
    的頭像 發(fā)表于 07-11 14:45 ?1815次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)有何用途 卷積神經(jīng)網(wǎng)絡(luò)通常運(yùn)用在哪里

    和應(yīng)用場(chǎng)景。 圖像識(shí)別 圖像識(shí)別是卷積神經(jīng)網(wǎng)絡(luò)最廣泛的應(yīng)用之一。CNN能夠自動(dòng)學(xué)習(xí)圖像中的特征,實(shí)現(xiàn)對(duì)圖像的分類(lèi)、識(shí)別和分析。以下是一些具體的應(yīng)用場(chǎng)景: 1.1 物體識(shí)別:CNN可以識(shí)
    的頭像 發(fā)表于 07-11 14:43 ?4351次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)通常包括哪幾層

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡(jiǎn)稱(chēng)CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、視頻分析、自然語(yǔ)言處理等領(lǐng)域。CNN的核心特點(diǎn)是能夠自動(dòng)提取輸入數(shù)據(jù)
    的頭像 發(fā)表于 07-11 14:41 ?1404次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本概念、原理及特點(diǎn)

    的基本概念、原理、特點(diǎn)以及在不同領(lǐng)域的應(yīng)用情況。 一、卷積神經(jīng)網(wǎng)絡(luò)的基本概念 卷積神經(jīng)網(wǎng)絡(luò)是一種深度學(xué)習(xí)算法,它由多層卷積層和池化層堆疊而成
    的頭像 發(fā)表于 07-11 14:38 ?2430次閱讀

    神經(jīng)網(wǎng)絡(luò)中的卷積層、池化層與全連接層

    在深度學(xué)習(xí)中,卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是一種特別適用于處理圖像數(shù)據(jù)的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。它通過(guò)卷積層、池化層和全連接層的組合,
    的頭像 發(fā)表于 07-11 14:18 ?9984次閱讀

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱(chēng)CNN)是兩種在人工智能和機(jī)器學(xué)習(xí)領(lǐng)域
    的頭像 發(fā)表于 07-10 15:24 ?2435次閱讀
    主站蜘蛛池模板: 界首市| 固始县| 泾源县| 石楼县| 禹州市| 招远市| 义乌市| 茂名市| 平和县| 红安县| 阳新县| 高陵县| 九龙城区| 奇台县| 兰考县| 保山市| 长岛县| 延川县| 宝丰县| 清水县| 长沙市| 无为县| 阿拉善右旗| 资阳市| 侯马市| 三穗县| 司法| 西吉县| 来宾市| 彰化市| 衡山县| 岳池县| 通渭县| 徐汇区| 延安市| 宜阳县| 沂南县| 红河县| 利津县| 民权县| 西昌市|