女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

一個極小卻被忽視造成鋰金屬電池性能退化的因素

鋰電聯盟會長 ? 來源:能源學人 ? 作者:Jan Frederik Dohmann ? 2021-05-29 14:38 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

鋰金屬基電池(LMBs)由于其高比容量(3860 mAh g-1)和低標準還原電位(相對于標準氫電極為-3.04 V),通常被認為是提高整體電池容量和能量密度的理想選擇。然而,鋰金屬電極受到鋰金屬的不均勻電化學沉積和溶解行為的挑戰。

此外,常規液態電解液的揮發性和易燃性也會引起安全問題。室溫離子液體(ILs)是熔融鹽,可用作各種類型電池有機溶劑的替代品,以解決液態電解液可燃性或揮發性有關的問題,并對Li的電化學溶解和沉積均勻性具有積極影響。

最近的研究強調了集流體-電解液相界處的電偶腐蝕現象。對于LMB,鋰金屬電極和集流體(通常是銅)或金屬電池外殼(通常是不銹鋼)之間的界面處,通過兩者與電解液的接觸,可以發生電流耦合

在這種情況下,Li作為氧化電位較低的金屬可以被氧化,而在另一種金屬上則發生還原反應。對于Li和集流體,Li氧化產生的電子可以通過集流體轉移到與電解液的相界,從而發生還原性電解液分解反應。這種反應也會導致Li表面形成凹坑。

【成果簡介】

近日,德國明斯特大學Martin Winter、Peter Bieker將電偶腐蝕作為一種電化學分解過程,認為它是導致電池性能退化的因素。

為此,作者系統地研究了四種離子液體(IL)中Li與Cu、Ni或不銹鋼的電偶腐蝕行為,以及與IL中LiTFSI濃度的關系,這些ILs由TFSI?和具有四種不同環尺寸和烷基鏈長度的季銨陽離子(N-丁基-N-甲基吡咯烷(Pyr14+)、N-甲基-N-丙基吡咯烷(Pyr13+)、N-丁基-N-甲基哌啶(Pip14+)和正丁基三甲基銨(N1114+))組成。

通過頂空-氣相色譜-質譜聯用技術,對IL的分解產物進行了鑒定,并通過Li電沉積和溶解的庫侖效率(CE)和零電阻電流法(ZRA)分析了IL的分解程度。

基于這些發現,作者表明了更復雜的電極設計和電解液配方的必要性。相關成果以題為“Galvanic Couples in Ionic Liquid-Based Electrolyte Systems for Lithium Metal Batteries—An Overlooked Cause of Galvanic Corrosion?”發表在國際著名期刊Adv. Energy Mater.上。

【內容詳情】

導電材料對Li腐蝕的影響

在這項研究中,將Li電極和不同導電材料組成電偶層并置于IL中,以模擬LMB中電偶的發生。在圖1中,在純N114TFSI中長時間浸泡后,不同材料組合的電偶層在Li表面形成凹坑。其中,Cu導致最明顯的Li表面劣化。

此外,僅在Li處觀察到點蝕形成,而未觀察到電偶金屬(Ni、Cu或不銹鋼)的形態變化。而對于使用非導電聚合物箔代替導電金屬的電偶層(boPET),Li表面沒有發生形態變化。因此,導致Li電極腐蝕的化學反應僅在具有導電材料的電偶層中發生,并且與Li接觸的材料的導電性會促進其進行。然而,如果在浸沒前向IL中添加足量的LiTFSI,則坑的形成會受到抑制。

ILs分解產物的鑒定

為進一步闡明在電偶腐蝕的反應途徑,利用頂空-氣相色譜-質譜(HS-GC-MS)分析了IL分解的氣體反應產物。圖2顯示了浸沒Cu||Li電偶層的IL分解產物的色譜圖。對于Pyr14TFSI和Pyr13TFSI,觀察到1-甲基吡咯烷是主要分解產物。

Hofmann消除烷基鏈的方法是由β位置的去質子作用引發。這使得Pyr14+和Pyr13+陽離子的相應丁基和丙基比甲基更易于消除,從而導致1-甲基吡咯烷作為這些陽離子的有利反應產物。對于以哌啶為基礎的Pip14+陽離子,觀察到了消除丁基的類似反應產物1-甲基哌啶(IIIa)。

N1114+陽離子的Hofmann消除產物是三甲胺。由于相對較大的分子量和反應性雙鍵,這些分解產物可作為形成聚合物或其他類型分解產物的潛在前體。聚合反應可能隨后導致凝膠狀殘留物,這種凝膠的形成會對電解液粘度和離子導電性產生負面影響,并最終導致電池劣化。

LiTFSI含量對電偶腐蝕的影響

進一步對腐蝕性反應進行定量評估以獲得最佳準確性。在圖3所示的HS-GC-MS試驗中,改變基于IL的電解液中LiTFSI的含量,并分析了由電腐蝕產生的氣態反應產物。如圖3a-d所示,四個ILs都顯示出烯烴分解產物。特別令人感興趣的是,對于四種ILs,當其中LiTFSI含量增加時,峰強度均降低,直到檢測不到任何烯烴的最高LiTFSI含量。

由于峰值強度依賴于分解產物的數量,因此可以得出結論:Li的電化腐蝕程度在很大程度上取決于ILs電解液中LiTFSI的濃度。在電化腐蝕過程中,來自Li的電子穿過電化學勢較高的金屬,并使金屬與電解液的界面發生反應。

因此,LiTFSI對電偶腐蝕的抑制可能是由于在Cu或Ni表面形成有效的絕緣界面層,或通過影響(例如,與干擾離子對或界面上形成雙層有關)引起的,但需要通過未來的研究進一步闡明。

ZRA法分析副反應程度

為模擬在具有Li基電極、集流體(Cu或Ni)和IL基電解液的LMB電池中發生的電偶腐蝕過程,對Cu||Li和Ni||Li電池進行了外部短路,并測量從Li到對電極的電流。該程序被稱為ZRA,已被證明有助于腐蝕現象的量化。在所有情況下,在ZRA實驗開始時,測量到幾毫安范圍內的初始電流,隨后,電流迅速下降,趨于穩定μA范圍(圖4)。

相對較高的初始電流不僅可以解釋為電偶腐蝕,也可以解釋為實驗開始過程中發生的其他自發電化學過程,如雙電層的形成或集流體表面氧化層的還原。然而,這些電流貢獻可以預期在短時間內(例如120 s)完成,在此之后,電偶腐蝕將成為整個測量腐蝕電流的主要貢獻因素。

在3天的測量期間,四種不同的ILs的腐蝕電流都遵循相似的模式,初始快速下降之后,收斂到高原狀區域(圖4)。進一步通過積分對應電流隨時間的變化,計算每個IL的總腐蝕電荷Q。結果表明,不同陽離子與金屬鋰的反應性受其化學結構的影響。

這種結構-性質關系是可以預期的,因為季銨離子的每個不同側基都有不同程度的消除反應。與無環體系相比,環取代基通常通過降低反應動力學來抑制消除反應。通過空間效應,增加烷基鏈取代基的長度可以略微降低消除反應的程度。

通過CE分析副反應程度

評估(腐蝕性)副反應程度的另一種方法是研究Li電沉積和溶解循環的CE。CE的值由電化學溶解的Li和先前電化學沉積的Li的比率來確定。因此,100%的值表示在沒有任何副作用的情況下的理想行為。

如圖5所示,對于Ni和Cu基體,在所有ILs中,CE均隨時間增加,從低至20%的值開始,在最初的幾個循環中逐漸增加,直到達到90%左右的穩定值。由于副反應產生的電子和鋰消耗水平較低,因此CE值較高。但此處所研究的電池在負極側上具有過量的Li。而對于實際應用的電池,力求使鋰含量最小化,因此期望避免副反應而導致的任何鋰損失。

電偶腐蝕機理

基于這項研究的結果,在還原消除反應期間,Li氧化產生的電子通過集流體轉移到季銨陽離子上,引發分解反應。Li的這種氧化可以認為是Li中形成凹坑的主要原因。

通過Li的電化學溶解實驗可知,Li表面的SEI層對離子具有導電性,但電子絕緣。因此,Li+可以通過表層進行傳輸,而電子電流只能通過集流體或者通常通過電耦合材料流向腐蝕性電解液。電偶腐蝕過程可在不施加外部電流的情況下發生,例如,在電池的儲存期間,從而引起對電池長期性能的影響。然而,這也表明,通過增加四種IL電解液中的LiTFSI含量,可以降低電偶腐蝕的程度。示意圖2 電偶腐蝕機制示意圖3 抑制電偶腐蝕的策略

【總結】研究表明,Li與Cu、Ni、甚至不銹鋼的電偶在ILs中會發生電偶腐蝕;即使無外加電流作用,Li表面也會形成凹坑。HS-GC-MS表明季銨陽離子會發生還原,其中一些分解產物可能進一步與凝膠狀或聚合物成分發生反應,從而加劇電池的退化。

此外,提出了一種用于定量分解的電化學方法組合,揭示了陽離子活性方面的明顯差異。非環季銨鹽N1114+離子的分解程度最高,可能是由于缺乏環的穩定性。對不同濃度的LiTFSI電解液中電偶反應性的比較表明,當存在一定的溶解閾值時,可以有效地抑制電偶腐蝕。

如果不避免集流體和電解液之間的接觸,則在實驗室或商用電池中可能會發生Li與另一種導電金屬的電偶。由于還可以觀察到不銹鋼和其他導電電池材料的電偶形成凹坑,因此電池中的電偶形成可能不僅限于集流體,而且可能發生在金屬電池外殼材料和其他材料中。

為避免離子液體電解液和其他電解液中電偶腐蝕過程引起的副反應,提出了以下對策:i)最小化導電材料(集流體和/或與金屬鋰接觸的金屬電池外殼部件)與電解液的界面面積;ii)使用足夠高的導電鹽濃度;iii)使用電解液添加劑,在鋰金屬和/或集流體上形成保護性表面層;iv)在將這些材料浸入電池之前,在鋰電極或集流體上涂覆保護性表面層。第一作者:Jan Frederik Dohmann通訊作者:Martin Winter、Peter Bieker通訊單位:德國明斯特大學

編輯:jq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 電偶
    +關注

    關注

    0

    文章

    50

    瀏覽量

    15164
  • 電解液
    +關注

    關注

    10

    文章

    860

    瀏覽量

    23460
  • 鋰金屬電池
    +關注

    關注

    0

    文章

    140

    瀏覽量

    4576

原文標題:一個造成鋰金屬電池性能退化卻被忽視的因素!

文章出處:【微信號:Recycle-Li-Battery,微信公眾號:鋰電聯盟會長】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    高臨界電流密度固態電池單晶的合成

    金屬直以來被認為是高能量密度電池的理想負極材料。不幸的是,金屬負極在實際電流密度下容易形成
    的頭像 發表于 03-01 16:05 ?688次閱讀
    高臨界電流密度固態<b class='flag-5'>電池</b>單晶<b class='flag-5'>鋰</b>的合成

    全固態金屬電池的最新研究

    成果簡介 全固態金屬電池因其高安全性與能量密度而備受關注,但其實際應用受限于的低可逆性、有限的正極載量以及對高溫高壓操作的需求,這主要源于固態電解質(SSE)的低電壓還原和高電壓分
    的頭像 發表于 01-23 10:52 ?757次閱讀
    全固態<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>的最新研究

    快速充電電池沉積、SEI膜生長與電解液分解的耦合機制定量分析

    充電會引發系列副反應,如沉積、固體電解質界面(SEI)生長、機械退化和熱生成,這些反應加速了電池性能
    的頭像 發表于 01-15 10:53 ?1183次閱讀
    快速充電<b class='flag-5'>電池</b>中<b class='flag-5'>鋰</b>沉積、SEI膜生長與電解液分解的耦合機制定量分析

    斯坦福大學鮑哲南/崔屹PNAS:高性能金屬電池用單氟電解質

    背景介紹 金屬電池因其高理論比容量(3860 mAh g-1)和低還原電位(-3.04 V)而備受關注。然而,金屬
    的頭像 發表于 01-14 13:53 ?550次閱讀
    斯坦福大學鮑哲南/崔屹PNAS:高<b class='flag-5'>性能</b><b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>用單氟電解質

    篩選理想的預化正極應用于無負極金屬電池

    研究背景無負極金屬電池(AF-LMBs)在初始組裝過程中移除了負極側的,可以實現電芯層面的能量密度最大化,與此同時還具備成本和存儲優勢。然而,在沒有負極側
    的頭像 發表于 12-24 11:07 ?964次閱讀
    篩選理想的預<b class='flag-5'>鋰</b>化正極應用于無負極<b class='flag-5'>金屬</b>鋰<b class='flag-5'>電池</b>

    電平匹配問題,簡單卻容易被忽視

    導讀在電路設計中,電平匹配是基本要求,但常常被忽視,可能導致設備故障和通信異常。本文我們將揭示如何避免因電平不匹配導致的設備故障,并提供實用的設計建議,確保您的電路設計既高效又穩定。電平匹配
    的頭像 發表于 12-20 11:34 ?1122次閱讀
    電平匹配問題,簡單卻容易<b class='flag-5'>被忽視</b>

    通過電荷分離型共價有機框架實現對金屬電池固態電解質界面的精準調控

    研究背景 隨著消費電子、電動車和儲能市場的快速發展,對高能量密度、長循環壽命和高安全性電池的需求日益增加。金屬電池(LMBs)因其卓越的理論比容量(3860 mAh/g)和最低電化學
    的頭像 發表于 11-27 10:02 ?894次閱讀
    通過電荷分離型共價有機框架實現對<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>固態電解質界面的精準調控

    欣界能源發布全球首創480Wh/kg高能量金屬固態電池

    的高能量金屬固態電池。該電池采用了公司自主研發的界面處理技術和固態電解質配方,成功將單體能量密度提升至480Wh/kg,這數據較傳統
    的頭像 發表于 11-22 13:37 ?765次閱讀

    欣界能源發布“獵鷹”金屬固態電池

    的界面處理技術和固態電解質配方。這些先進技術使得電池的單體能量密度得到了顯著提升,高達480Wh/kg。與傳統電池相比,這性能提升了倍以
    的頭像 發表于 11-18 11:44 ?1092次閱讀

    CASAIM與北京工業大學合作開展鋼桁梁鋼材三維掃描試驗,研究高服役期鋼材銹蝕特征及力學性能退化規律

    近期,CASAIM與北京工業大學攜手,開展鋼桁梁鋼材三維掃描試驗,此次研究結合了北京工業大學在材料科學方面的深厚積累,以及CASAIM在實際工程應用上的豐富經驗,共同推進鋼桁梁鋼材銹蝕機理的深入研究和力學性能退化規律的探索。
    的頭像 發表于 11-12 15:01 ?399次閱讀

    全固態金屬電池陽極夾層設計

    全固態金屬電池(ASSLB)由于其高能量密度和高安全性而引起了人們的強烈興趣,金屬被認為是
    的頭像 發表于 10-31 13:45 ?661次閱讀
    全固態<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>的<b class='flag-5'>鋰</b>陽極夾層設計

    電池怎么充電

     電池(通常指的是鐵磷酸電池,即LiFePO?電池)的充電方法與其他類型的鋰電池類似,主要
    的頭像 發表于 10-03 15:12 ?1345次閱讀

    電池和鋰電池的區別

    電池通常指的是磷酸鐵鋰電池(LiFePO4 Battery),而鋰電池則是更廣泛的類別,
    的頭像 發表于 10-03 15:08 ?2260次閱讀

    高能數造金屬全固態電池小試級整線正式交付

    近日,國內領先的新能源技術解決方案提供商——高能數造,成功向家產業端客戶交付了其自主研發的金屬全固態電池小試級整線設備,標志著公司在全固態電池
    的頭像 發表于 07-18 15:17 ?995次閱讀

    溫度是如何對動力電池性能造成影響?

    溫度是如何對動力電池性能造成影響的。 、溫度對電池容量的影響 電池容量是
    的頭像 發表于 07-16 14:48 ?1820次閱讀
    主站蜘蛛池模板: 靖边县| 白朗县| 达拉特旗| 鄂托克旗| 惠州市| 临城县| 望江县| 巫山县| 蒙自县| 罗甸县| 秀山| 绥棱县| 章丘市| 南昌县| 博兴县| 贵溪市| 长治市| 延边| 上高县| 莲花县| 酉阳| 江安县| 岗巴县| 沅陵县| 开封县| 太和县| 杭锦旗| 平安县| 邵阳市| 洮南市| 澜沧| 宜宾市| 全椒县| 陕西省| 东宁县| 玛纳斯县| 丽江市| 梁山县| 河东区| 清涧县| 庆安县|