女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

許居衍院士:摩爾定律已死,可重構AI芯片前途可期

章鷹觀察 ? 來源:集微網 ? 作者:小北 ? 2018-08-23 09:24 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

(本文來源于集微網,記者小北。本文作為轉載分享。)

雖然目前離真正的人工智能還有一段距離,但人工智能的創新、發展、落地速度非常迅速。普華永道統計數據顯示,到2030年,中國、美國與歐洲的AI產業規模將分別達到7.0萬億美元、3.7萬億美元、2.5萬億美元。李開復曾說過,中國的數據優勢將是美國無法比擬的。

對于AI技術快速發展,扮演核心角色的芯片首要任務就是提供更高算力。在今天舉行的第十六屆中國集成電路技術與應用研討會暨南京國際集成電路技術達摩論壇上,中國工程院院士許居衍先生進行了“AI浪潮與芯片架構創新”的演講。

GPU推動AI掀起第三次浪潮,芯片在AI演變中扮演中心角色

許院士開篇便表明,摩爾定律已死,人工智能萬歲的觀點。同時,許院士指出在AI爆發之前,ICT從未如此與芯片緊密相連。芯片在AI演變中扮演了中心角色,算力的需求又給芯片帶來壓力。

支持這一觀點的分析是,AI浪潮、計算浪潮、芯片浪潮發生時期大致重疊,即三種創新浪潮的關鍵時間節點大致相同。這說明半導體的變化在ICT演變中扮演了關鍵角色。

人工智能在1956年被提出,如今已有62年的歷史了,當下正處于第三次浪潮時期。三次浪潮的核心分別是神經元、專家系統以及深度學習,AI的發展依賴于算法及硬件。

計算演變浪潮表明,如今已經進入到了“片上式”階段,并行處理成為主流,這個時代的應用特色就是數字智能。片上計算呼應半導體創新。

許院士認為,芯片技術恰是計算與IT革命的引擎。GPU推動AI掀起第三次浪潮,算力需求牽引SoC進入超算,片上超算開啟泛在計算時代,架構創新牽引芯片可再編程,可重構芯片繼續推動AI再掀浪潮。

人工智能在1956年被提出,如今已有62年的歷史了,當下正處于第三次浪潮時期。三次浪潮的核心分別是神經元、專家系統以及深度學習,AI的發展依賴于算法及硬件。

計算演變浪潮表明,如今已經進入到了“片上式”階段,并行處理成為主流,這個時代的應用特色就是數字智能。片上計算呼應半導體創新。

許院士認為,芯片技術恰是計算與IT革命的引擎。GPU推動AI掀起第三次浪潮,算力需求牽引SoC進入超算,片上超算開啟泛在計算時代,架構創新牽引芯片可再編程,可重構芯片繼續推動AI再掀浪潮。

盡管芯片編程技術也在不斷發展,從封裝編程、軟件編程、硬件編程發展到軟硬雙編程。但不可回避的是,芯片如今受限于硅技術(Dennard Scaling難以為繼)、馮·諾依曼(指令流導致算力上不去)兩大方面存在的問題。因此,許院士提出,新時代應該聚焦于架構創新。

對于架構創新,許院士指出系統視野、多片和堆疊架構、異構架構是最主要的三大方向。其實,異構芯片已占據AI絕大部分的天下,GPU、FPGAASIC也是大眾所關注的焦點。

半導體亟需開啟新征程,可重構AI芯片前途可期

馬爾科姆-佩恩曾提出半導體三種創新模式,即顛覆性創新、指數性創新與循環性創新,但目前已遇到發展瓶頸或者發展到盡頭。以指數性創新為例,許院士認為摩爾定律已經失效,所以指數創新模式并不是AI芯片創新的最佳途徑。

許院士曾提出許氏循環理論,其預測的最后一個浪潮將是u-rSoC(用戶可重構SoC)。在此次論壇上,許院士表示,半導體將沿著循環模式發展,2018年~2028年將進入U-rSoC浪潮,這個時代的特點是片上泛在計算和萬物智能。

此外,許院士指出,目前半導體產業實際存在無效益的繁榮、產品(硬件)難度增大、產品研發費用增高盈利空間下降等三大問題。那么,就需要開啟新的征程,比如拓寬硬件開源業務、提升半定制技術。

在許院士看來,RISC-V值得關注,可重構“白片”( rSoC)將大有可為。

可重構芯片具有低功耗、高性能、安全性、靈活性、并行性、低成本的特點。目前,國內有兩款可重構芯片,分別是清華Thinker可重構AI芯片和南大RASP可重構芯片。這兩款芯片都表現出了優異的性能。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 摩爾定律
    +關注

    關注

    4

    文章

    639

    瀏覽量

    79832
  • AI芯片
    +關注

    關注

    17

    文章

    1983

    瀏覽量

    35858
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    清微智能官宣:國產重構芯片全球出貨量突破2000萬顆

    芯片累計出貨量突破2000萬顆,成為全球銷量領先的重構芯片廠商。 2000萬顆出貨量 堅持高階國產替代,從清華實驗室到2000萬顆的產業
    的頭像 發表于 06-12 17:15 ?287次閱讀
    清微智能官宣:國產<b class='flag-5'>可</b><b class='flag-5'>重構</b><b class='flag-5'>芯片</b>全球出貨量突破2000萬顆

    跨越摩爾定律,新思科技掩膜方案憑何改寫3nm以下芯片游戲規則

    。 然而,隨著摩爾定律逼近物理極限,傳統掩模設計方法面臨巨大挑戰,以2nm制程為例,掩膜版上的每個圖形特征尺寸僅為頭發絲直徑的五萬分之一,任何微小誤差都可能導致芯片失效。對此,新思科技(Synopsys)推出制造解決方案,尤其是
    的頭像 發表于 05-16 09:36 ?4411次閱讀
    跨越<b class='flag-5'>摩爾定律</b>,新思科技掩膜方案憑何改寫3nm以下<b class='flag-5'>芯片</b>游戲規則

    電力電子中的“摩爾定律”(1)

    本文是第二屆電力電子科普征文大賽的獲獎作品,來自上海科技大學劉賾源的投稿。著名的摩爾定律中指出,集成電路每過一定時間就會性能翻倍,成本減半。那么電力電子當中是否也存在著摩爾定律呢?1965年,英特爾
    的頭像 發表于 05-10 08:32 ?227次閱讀
    電力電子中的“<b class='flag-5'>摩爾定律</b>”(1)

    玻璃基板在芯片封裝中的應用

    自集成電路誕生以來,摩爾定律一直是其發展的核心驅動力。根據摩爾定律,集成電路單位面積上的晶體管數量每18到24個月翻一番,性能也隨之提升。然而,隨著晶體管尺寸的不斷縮小,制造工藝的復雜度和成本急劇
    的頭像 發表于 04-23 11:53 ?782次閱讀
    玻璃基板在<b class='flag-5'>芯片</b>封裝中的應用

    Wi-Fi FEM賽道

    轉載自《鐘林談芯》 創業的路上起起落落,誰能掙脫失敗的枷鎖?當行業都認為Wi-Fi FEM賽道的時候,我該如何面對? 又是一天的客戶拜訪,早出晚歸,身體有些疲憊。回到酒店房間后直接在沙發上躺平
    的頭像 發表于 04-10 13:56 ?260次閱讀
    Wi-Fi FEM賽道<b class='flag-5'>已</b><b class='flag-5'>死</b>?

    瑞沃微先進封裝:突破摩爾定律枷鎖,助力半導體新飛躍

    在半導體行業的發展歷程中,技術創新始終是推動行業前進的核心動力。深圳瑞沃微半導體憑借其先進封裝技術,用強大的實力和創新理念,立志將半導體行業邁向新的高度。 回溯半導體行業的發展軌跡,摩爾定律無疑是一個重要的里程碑
    的頭像 發表于 03-17 11:33 ?409次閱讀
    瑞沃微先進封裝:突破<b class='flag-5'>摩爾定律</b>枷鎖,助力半導體新飛躍

    AI正在對硬件互連提出“過分”要求 | Samtec于Keysight開放日深度分享

    摘要/前言 硬件加速,可能總會是新的難點和挑戰。面對信息速率和密度不斷提升的AI,技術進步也會遵循摩爾定律,那硬件互連準備好了嗎? Samtec China Sr. FAE Manager 胡亞捷
    發表于 02-26 11:09 ?294次閱讀
    <b class='flag-5'>AI</b>正在對硬件互連提出“過分”要求 | Samtec于Keysight開放日深度分享

    混合鍵合中的銅連接:或成摩爾定律救星

    將兩塊或多塊芯片疊放在同一個封裝中。這使芯片制造商能夠增加處理器和內存中的晶體管數量,雖然晶體管的縮小速度普遍放緩,但這曾推動摩爾定律發展。2024年5月,在美國丹佛舉行的IEEE電
    的頭像 發表于 02-09 09:21 ?609次閱讀
    混合鍵合中的銅連接:或成<b class='flag-5'>摩爾定律</b>救星

    石墨烯互連技術:延續摩爾定律的新希望

    半導體行業長期秉持的摩爾定律(該定律規定芯片上的晶體管密度大約每兩年應翻一番)越來越難以維持。縮小晶體管及其間互連的能力正遭遇一些基本的物理限制。特別是,當銅互連按比例縮小時,其電阻率急劇上升,這會
    的頭像 發表于 01-09 11:34 ?549次閱讀

    摩爾定律是什么 影響了我們哪些方面

    摩爾定律是由英特爾公司創始人戈登·摩爾提出的,它揭示了集成電路上可容納的晶體管數量大約每18-24個月增加一倍的趨勢。該定律不僅推動了計算機硬件的快速發展,也對多個領域產生了深遠影響。
    的頭像 發表于 01-07 18:31 ?1319次閱讀

    Cadence如何應對AI芯片設計挑戰

    生成式 AI 引領智能革命成為產業升級的核心動力并點燃了“百模大戰”。多樣化的大模型應用激增對高性能AI 芯片的需求,促使行業在摩爾定律放緩的背景下,加速推進 2.5D、3D 及 3.
    的頭像 發表于 12-14 15:27 ?1314次閱讀

    摩爾定律時代,提升集成芯片系統化能力的有效途徑有哪些?

    電子發燒友網報道(文/吳子鵬)當前,終端市場需求呈現多元化、智能化的發展趨勢,芯片制造則已經進入后摩爾定律時代,這就導致先進的工藝制程雖仍然是芯片性能提升的重要手段,但效果已經不如從前,先進封裝
    的頭像 發表于 12-03 00:13 ?3109次閱讀

    玻璃通孔(TGV)工藝技術的應用

    人工智能對高性能、持續計算和網絡硅片的需求無疑增加了研發投入,加快了半導體技術的創新步伐。隨著摩爾定律芯片層面的放緩,人們希望在?ASIC 封裝內封裝盡可能多的芯片,并在封裝層面獲
    的頭像 發表于 11-24 13:03 ?2019次閱讀
    玻璃通孔(TGV)工藝技術的應用

    高算力AI芯片主張“超越摩爾”,Chiplet與先進封裝技術迎百家爭鳴時代

    越來越差。在這種情況下,超越摩爾逐漸成為打造高算力芯片的主流技術。 ? 超越摩爾是后摩爾定律時代三大技術路線之一,強調利用層堆疊和高速接口技術將處理、模擬/射頻、光電、能源、傳感等功能
    的頭像 發表于 09-04 01:16 ?4154次閱讀
    高算力<b class='flag-5'>AI</b><b class='flag-5'>芯片</b>主張“超越<b class='flag-5'>摩爾</b>”,Chiplet與先進封裝技術迎百家爭鳴時代
    主站蜘蛛池模板: 东丰县| 鹤峰县| 建始县| 乌鲁木齐市| 会东县| 彭水| 德兴市| 贺州市| 夏河县| 宜丰县| 甘谷县| 罗源县| 屏东县| 肥东县| 玉林市| 马边| 中超| 通榆县| 墨竹工卡县| 西贡区| 三明市| 永春县| 德安县| 蒙自县| 元氏县| 灵石县| 淮北市| 兰溪市| 武夷山市| 屏南县| 台北县| 聊城市| 嘉祥县| 连州市| 长葛市| 阜南县| 根河市| 志丹县| 玛沁县| 玉树县| 夏津县|