女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

電子發燒友App

硬聲App

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示
電子發燒友網>電子資料下載>電子資料>PyTorch教程10.7之用于機器翻譯的編碼器-解碼器Seq2Seq

PyTorch教程10.7之用于機器翻譯的編碼器-解碼器Seq2Seq

2023-06-05 | pdf | 0.37 MB | 次下載 | 免費

資料介紹

在所謂的 seq2seq 問題中,如機器翻譯(如 第 10.5 節所述),其中輸入和輸出均由可變長度的未對齊序列組成,我們通常依賴編碼器-解碼器架構(第10.6 節)。在本節中,我們將演示編碼器-解碼器架構在機器翻譯任務中的應用,其中編碼器和解碼器均作為 RNN 實現( Cho,2014 年Sutskever等人,2014 年

在這里,編碼器 RNN 將可變長度序列作為輸入并將其轉換為固定形狀的隱藏狀態。稍后,在 第 11 節中,我們將介紹注意力機制,它允許我們訪問編碼輸入,而無需將整個輸入壓縮為單個固定長度的表示形式。

然后,為了生成輸出序列,一次一個標記,由一個單獨的 RNN 組成的解碼器模型將在給定輸入序列和輸出中的前一個標記的情況下預測每個連續的目標標記。在訓練期間,解碼器通常會以官方“ground-truth”標簽中的前面標記為條件。然而,在測試時,我們希望根據已經預測的標記來調節解碼器的每個輸出。請注意,如果我們忽略編碼器,則 seq2seq 架構中的解碼器的行為就像普通語言模型一樣。圖 10.7.1說明了如何在機器翻譯中使用兩個 RNN 進行序列到序列學習。

https://file.elecfans.com/web2/M00/A9/C8/poYBAGR9N3mATR0fAAFvoV0b0sI161.svg

圖 10.7.1使用 RNN 編碼器和 RNN 解碼器進行序列到序列學習。

圖 10.7.1中,特殊的“”標記標志著序列的結束。一旦生成此令牌,我們的模型就可以停止進行預測。在 RNN 解碼器的初始時間步,有兩個特殊的設計決策需要注意:首先,我們以特殊的序列開始“”標記開始每個輸入。其次,我們可以在每個解碼時間步將編碼器的最終隱藏狀態輸入解碼器Cho等人,2014 年在其他一些設計中,例如Sutskever等人。( 2014 ),RNN 編碼器的最終隱藏狀態僅在第一個解碼步驟用于啟動解碼器的隱藏狀態。

import collections
import math
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
import collections
import math
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn, rnn
from d2l import mxnet as d2l

npx.set_np()
import collections
import math
from functools import partial
import jax
import optax
from flax import linen as nn
from jax import numpy as jnp
from d2l import jax as d2l
import collections
import math
import tensorflow as tf
from d2l import tensorflow as d2l

10.7.1。教師強迫

雖然在輸入序列上運行編碼器相對簡單,但如何處理解碼器的輸入和輸出則需要更加小心。最常見的方法有時稱為 教師強制在這里,原始目標序列(標記標簽)作為輸入被送入解碼器。更具體地說,特殊的序列開始標記和原始目標序列(不包括最終標記)被連接起來作為解碼器的輸入,而解碼器輸出(用于訓練的標簽)是原始目標序列,移動了一個標記: “”,“Ils”,“regardent”,“。” “Ils”、“regardent”、“.”、“”(圖 10.7.1)。

我們在10.5.3 節中的實施為教師強制準備了訓練數據,其中用于自監督學習的轉移標記類似于9.3 節中的語言模型訓練。另一種方法是將來自前一個時間步的預測標記作為當前輸入提供給解碼器。

下面,我們 將更詳細地解釋圖 10.7.1中描繪的設計。我們將在第 10.5 節中介紹的英語-法語數據集上訓練該模型進行機器翻譯

10.7.2。編碼器

回想一下,編碼器將可變長度的輸入序列轉換為固定形狀的上下文變量 c(見圖 10.7.1)。

考慮一個單序列示例(批量大小 1)。假設輸入序列是x1,…,xT, 這樣xt是個 tth令牌。在時間步t, RNN 變換輸入特征向量xt為了xt 和隱藏狀態ht?1從上一次進入當前隱藏狀態ht. 我們可以使用一個函數f表達RNN循環層的變換:

(10.7.1)ht=f(xt,ht?1).

通常,編碼器通過自定義函數將所有時間步的隱藏狀態轉換為上下文變量q:

(10.7.2)c=q(h1,…,hT).

例如,在圖 10.7.1中,上下文變量只是隱藏狀態hT對應于編碼器 RNN 在處理輸入序列的最終標記后的表示。

在這個例子中,我們使用單向 RNN 來設計編碼器,其中隱藏狀態僅取決于隱藏狀態時間步和之前的輸入子序列。我們還可以使用雙向 RNN 構建編碼器。在這種情況下,隱藏狀態取決于時間步長前后的子序列(包括當前時間步長的輸入),它編碼了整個序列的信息

現在讓我們來實現 RNN 編碼器。請注意,我們使用嵌入層來獲取輸入序列中每個標記的特征向量。嵌入層的權重是一個矩陣,其中行數對應于輸入詞匯表的大小 ( vocab_size),列數對應于特征向量的維度 ( embed_size)。對于任何輸入令牌索引i,嵌入層獲取ith權矩陣的行(從 0 開始)返回其特征向量。在這里,我們使用多層 GRU 實現編碼器。

def init_seq2seq(module): #@save
  """Initialize weights for Seq2Seq."""
  if type(module) == nn.Linear:
     nn.init.xavier_uniform_(module.weight)
  if type(module) == nn.GRU:
    for param in module._flat_weights_names:
      if "weight" in param:
        nn.init.xavier_uniform_(module._parameters[param])

class Seq2SeqEncoder(d2l.Encoder): #@save
  """The RNN encoder for sequence to sequence learning."""
  def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
         dropout=0):
    super().__init__()
    self.embedding = nn.Embedding(vocab_size, embed_size)
    self.rnn = d2l.GRU(embed_size, num_hiddens, num_layers, dropout)
    self.apply(init_seq2seq)

  def forward(self, X, *args):
    # X shape: (batch_size, num_steps)
    embs = self.embedding(X.t().type(torch.in
下載該資料的人也在下載 下載該資料的人還在閱讀
更多 >

評論

查看更多

下載排行

本周

  1. 1涂鴉各WiFi模塊原理圖加PCB封裝
  2. 11.75 MB   |  76次下載  |  1 積分
  3. 2錦銳科技CA51F2 SDK開發包
  4. 24.06 MB   |  29次下載  |  1 積分
  5. 3錦銳CA51F005 SDK開發包
  6. 19.47 MB   |  3次下載  |  1 積分
  7. 4蘋果iphone 11電路原理圖
  8. 4.98 MB   |  3次下載  |  2 積分
  9. 5基礎模擬電子電路
  10. 3.80 MB   |  3次下載  |  1 積分
  11. 6RA-Eco-RA6M4-100PIN-V1.0開發板資料
  12. 34.89 MB  |  1次下載  |  免費
  13. 7STM32F3系列、STM32F4系列、STM32L4系列和STM32L4+系列Cortex-M4編程手冊
  14. 3.32 MB   |  1次下載  |  免費
  15. 8聯想A820t手機維修圖紙包括主板原理圖 尾板原理圖 點位圖
  16. 0.62 MB   |  次下載  |  5 積分

本月

  1. 1AI智能眼鏡產業鏈分析
  2. 4.43 MB   |  383次下載  |  免費
  3. 2蘇泊爾電磁爐線路的電路原理圖資料合集
  4. 2.02 MB   |  296次下載  |  5 積分
  5. 3貼片三極管上的印字與真實名稱的對照表詳細說明
  6. 0.50 MB   |  94次下載  |  1 積分
  7. 4長虹液晶電視R-HS310B-5HF01的電源板電路原理圖
  8. 0.46 MB   |  91次下載  |  5 積分
  9. 5涂鴉各WiFi模塊原理圖加PCB封裝
  10. 11.75 MB   |  76次下載  |  1 積分
  11. 6錦銳科技CA51F2 SDK開發包
  12. 24.06 MB   |  29次下載  |  1 積分
  13. 7AO4803A雙P通道增強型場效應晶體管的數據手冊
  14. 0.11 MB   |  28次下載  |  2 積分
  15. 8長虹液晶彩電LS29機芯的技術資料說明
  16. 3.42 MB   |  16次下載  |  2 積分

總榜

  1. 1matlab軟件下載入口
  2. 未知  |  935127次下載  |  10 積分
  3. 2開源硬件-PMP21529.1-4 開關降壓/升壓雙向直流/直流轉換器 PCB layout 設計
  4. 1.48MB  |  420064次下載  |  10 積分
  5. 3Altium DXP2002下載入口
  6. 未知  |  233089次下載  |  10 積分
  7. 4電路仿真軟件multisim 10.0免費下載
  8. 340992  |  191388次下載  |  10 積分
  9. 5十天學會AVR單片機與C語言視頻教程 下載
  10. 158M  |  183342次下載  |  10 積分
  11. 6labview8.5下載
  12. 未知  |  81588次下載  |  10 積分
  13. 7Keil工具MDK-Arm免費下載
  14. 0.02 MB  |  73815次下載  |  10 積分
  15. 8LabVIEW 8.6下載
  16. 未知  |  65988次下載  |  10 積分
主站蜘蛛池模板: 彰化县| 四会市| 湟源县| 乐平市| 沁源县| 周至县| 江阴市| 汉源县| 通化县| 泰来县| 商河县| 武城县| 宜章县| 璧山县| 元氏县| 阜新市| 酉阳| 车致| 保定市| 怀来县| 湖北省| 资溪县| 昆山市| 台江县| 资阳市| 武邑县| 曲麻莱县| 万山特区| 奉新县| 准格尔旗| 元谋县| 龙游县| 和平区| 长葛市| 蒙城县| 辽中县| 钟山县| 虎林市| 峨眉山市| 漠河县| 合肥市|