完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>
標(biāo)簽 > 激光器
激光器——能發(fā)射激光的裝置。1954年制成了第一臺微波量子放大器,獲得了高度相干的微波束。1958年A.L.肖洛和C.H.湯斯把微波量子放大器原理推廣應(yīng)用到光頻范圍,1960年T.H.梅曼等人制成了第一臺紅寶石激光器。
激光器——能發(fā)射激光的裝置。1954年制成了第一臺微波量子放大器,獲得了高度相干的微波束。1958年A.L.肖洛和C.H.湯斯把微波量子放大器原理推廣應(yīng)用到光頻范圍,1960年T.H.梅曼等人制成了第一臺紅寶石激光器。1961年A.賈文等人制成了氦氖激光器。1962年R.N.霍耳等人創(chuàng)制了砷化鎵半導(dǎo)體激光器。以后,激光器的種類就越來越多。按工作介質(zhì)分,激光器可分為氣體激光器、固體激光器、半導(dǎo)體激光器和染料激光器4大類。近來還發(fā)展了自由電子激光器,大功率激光器通常都是脈沖式輸出。
激光器——能發(fā)射激光的裝置。1954年制成了第一臺微波量子放大器,獲得了高度相干的微波束。1958年A.L.肖洛和C.H.湯斯把微波量子放大器原理推廣應(yīng)用到光頻范圍,1960年T.H.梅曼等人制成了第一臺紅寶石激光器。1961年A.賈文等人制成了氦氖激光器。1962年R.N.霍耳等人創(chuàng)制了砷化鎵半導(dǎo)體激光器。以后,激光器的種類就越來越多。按工作介質(zhì)分,激光器可分為氣體激光器、固體激光器、半導(dǎo)體激光器和染料激光器4大類。近來還發(fā)展了自由電子激光器,大功率激光器通常都是脈沖式輸出。
除自由電子激光器外,各種激光器的基本工作原理均相同。產(chǎn)生激光的必不可少的條件是粒子數(shù)反轉(zhuǎn)和增益大于損耗,所以裝置中必不可少的組成部分有激勵(lì)(或抽運(yùn))源、具有亞穩(wěn)態(tài)能級的工作介質(zhì)兩個(gè)部分。激勵(lì)是工作介質(zhì)吸收外來能量后激發(fā)到激發(fā)態(tài),為實(shí)現(xiàn)并維持粒子數(shù)反轉(zhuǎn)創(chuàng)造條件。激勵(lì)方式有光學(xué)激勵(lì)、電激勵(lì)、化學(xué)激勵(lì)和核能激勵(lì)等。工作介質(zhì)具有亞穩(wěn)能級是使受激輻射占主導(dǎo)地位,從而實(shí)現(xiàn)光放大。激光器中常見的組成部分還有諧振腔,但諧振腔( 見光學(xué)諧振腔)并非必不可少的組成部分,諧振腔可使腔內(nèi)的光子有一致的頻率、相位和運(yùn)行方向,從而使激光具有良好的方向性和相干性。而且,它可以很好地縮短工作物質(zhì)的長度,還能通過改變諧振腔長度來調(diào)節(jié)所產(chǎn)生激光的模式(即選模),所以一般激光器都具有諧振腔。
激光工作物質(zhì)
是指用來實(shí)現(xiàn)粒子數(shù)反轉(zhuǎn)并產(chǎn)生光的受激輻射放大作用的物質(zhì)體系,有時(shí)也稱為激光增益媒質(zhì),它們可以是固體(晶體、玻璃)、氣體(原子氣體、離子氣體、分子氣體)、半導(dǎo)體和液體等媒質(zhì)。對激光工作物質(zhì)的主要要求,是盡可能在其工作粒子的特定能級間實(shí)現(xiàn)較大程度的粒子數(shù)反轉(zhuǎn),并使這種反轉(zhuǎn)在整個(gè)激光發(fā)射作用過程中盡可能有效地保持下去;為此,要求工作物質(zhì)具有合適的能級結(jié)構(gòu)和躍遷特性。
激勵(lì)抽運(yùn)系統(tǒng)
是指為使激光工作物質(zhì)實(shí)現(xiàn)并維持粒子數(shù)反轉(zhuǎn)而提供能量來源的機(jī)構(gòu)或裝置。根據(jù)工作物質(zhì)和激光器運(yùn)轉(zhuǎn)條件的不同,可以采取不同的激勵(lì)方式和激勵(lì)裝置,常見的有以下四種。①光學(xué)激勵(lì)(光泵)。是利用外界光源發(fā)出的光來輻照工作物質(zhì)以實(shí)現(xiàn)粒子數(shù)反轉(zhuǎn)的,整個(gè)激勵(lì)裝置,通常是由氣體放電光源(如氙燈、氪燈)和聚光器組成,這種激勵(lì)方式也稱作燈泵浦。②氣體放電激勵(lì)。是利用在氣體工作物質(zhì)內(nèi)發(fā)生的氣體放電過程來實(shí)現(xiàn)粒子數(shù)反轉(zhuǎn)的,整個(gè)激勵(lì)裝置通常由放電電極和放電電源組成。③化學(xué)激勵(lì)。是利用在工作物質(zhì)內(nèi)部發(fā)生的化學(xué)反應(yīng)過程來實(shí)現(xiàn)粒子數(shù)反轉(zhuǎn)的,通常要求有適當(dāng)?shù)幕瘜W(xué)反應(yīng)物和相應(yīng)的引發(fā)措施。④核能激勵(lì)。是利用小型核裂變反應(yīng)所產(chǎn)生的裂變碎片、高能粒子或放射線來激勵(lì)工作物質(zhì)并實(shí)現(xiàn)粒子數(shù)反轉(zhuǎn)的。
光學(xué)共振腔
通常是由具有一定幾何形狀和光學(xué)反射特性的兩塊反射鏡按特定的方式組合而成。作用為:①提供光學(xué)反饋能力,使受激輻射光子在腔內(nèi)多次往返以形成相干的持續(xù)振蕩。②對腔內(nèi)往返振蕩光束的方向和頻率進(jìn)行限制,以保證輸出激光具有一定的定向性和單色性。共振腔作用①,是由通常組成腔的兩個(gè)反射鏡的幾何形狀(反射面曲率半徑)和相對組合方式所決定;而作用②,則是由給定共振腔型對腔內(nèi)不同行進(jìn)方向和不同頻率的光,具有不同的選擇性損耗特性所決定的。
分類激光器的種類是很多的。下面,將分別從激光工作物質(zhì)、激勵(lì)方式、運(yùn)轉(zhuǎn)方式、輸出波長范圍等幾個(gè)方面進(jìn)行分類介紹。
ADN2830平均功率控制器,適用于連續(xù)波(CW)激光器技術(shù)手冊
ADN2830經(jīng)過初始工廠設(shè)置之后,可對連續(xù)波(CW)激光二極管(LD)的平均光功率進(jìn)行閉環(huán)控制。控制環(huán)路通過調(diào)整激光偏置電流來維持恒定的背光監(jiān)控光電二...
在過去的 25 年里,光纖通信網(wǎng)絡(luò)的部署和容量迅速增長。這種增長是新光電技術(shù)的發(fā)展帶來的,這些技術(shù)充分利用了光纖的巨大帶寬。如今,系統(tǒng)以超過100 Gb...
當(dāng)激光器導(dǎo)通時(shí),開始產(chǎn)生自發(fā)輻射的光子直到載流子密度超過一個(gè)閾值。因而,產(chǎn)生受激輻射,也就是說,真實(shí)的激光器工作,開始于某個(gè)時(shí)延以后。
基于混合集成二極管激光器實(shí)現(xiàn)光束操控系統(tǒng)
基于量子點(diǎn)RSOAs的1.3 μm芯片級可調(diào)諧窄線寬混合集成二極管激光器通過端面耦合到硅氮化物光子集成電路得以實(shí)現(xiàn)。混合激光器的線寬約為85 kHz,調(diào)...
激光劃片作為新興材料加工技術(shù),近年來憑借非接觸式加工特性實(shí)現(xiàn)快速發(fā)展。其工作機(jī)制是將高峰值功率激光束經(jīng)擴(kuò)束、整形后,精準(zhǔn)聚焦于藍(lán)寶石基片、硅片、碳化硅(...
熱可調(diào)窄線寬外腔激光器設(shè)計(jì)方案
我們提出了一種無模式跳變(mode-hop-free)的外腔激光器(ECL)設(shè)計(jì),該設(shè)計(jì)結(jié)合了半導(dǎo)體增益芯片和具有增強(qiáng)熱靈敏度的光纖布拉格光柵(FBG)...
通過啟發(fā)式參數(shù)提取校準(zhǔn)半導(dǎo)體光放大器的TLM模型
通過大量仿真優(yōu)化了半導(dǎo)體光放大器模型的系統(tǒng)行為,在光增益與偏置電流、不同光輸入功率(-25 至 0 dBm)以及不同 I 偏置(0 至 180 mA)下...
在新能源、半導(dǎo)體、汽車電子、激光器等前沿應(yīng)用領(lǐng)域,測試需求日益復(fù)雜,傳統(tǒng)正電壓供電方案已難以滿足芯片偏置測試、電化學(xué)沉積工藝、運(yùn)算放大器供電等對負(fù)電壓及...
半導(dǎo)體激光器產(chǎn)品參數(shù)介紹立即下載
類別:通信網(wǎng)絡(luò) 2024-01-23 標(biāo)簽:半導(dǎo)體激光器
類別:電子資料 2023-11-21 標(biāo)簽:激光器超聲波清洗機(jī)
威固特負(fù)濾光片(陷波濾光片)超聲波清洗機(jī)介紹立即下載
類別:電子資料 2023-11-21 標(biāo)簽:激光器濾光片超聲波清洗機(jī)
半導(dǎo)體激光器工作原理及軍事應(yīng)用立即下載
類別:電子資料 2023-11-01 標(biāo)簽:激光器半導(dǎo)體激光器
顯示面板 “良率保衛(wèi)戰(zhàn)”:新啟航激光修屏如何破解國產(chǎn)面板廠 “卡脖子” 困局?
顯示面板作為現(xiàn)代電子設(shè)備的關(guān)鍵部件,其產(chǎn)業(yè)發(fā)展備受關(guān)注。近年來,國產(chǎn)面板廠在全球市場中占據(jù)了重要份額,但在技術(shù)層面仍面臨諸多 “卡脖子” 難題,其中面板...
近日,在盛大啟幕的“2025長春國際光電博覽會(huì)”首日,晶眾光電展臺迎來高規(guī)格考察團(tuán)。濟(jì)南市副市長謝堃、長春理工大學(xué)副校長董科研、長春市朝陽區(qū)委書記許軍等...
Aigtek高壓放大器在鎖相環(huán)穩(wěn)定重復(fù)頻率研究中的應(yīng)用
實(shí)驗(yàn)名稱: 鎖相環(huán)穩(wěn)定重復(fù)頻率的系統(tǒng)分析 實(shí)驗(yàn)內(nèi)容: 針對重復(fù)頻率的漂移,引入兩套鎖相環(huán)系統(tǒng)反饋控制兩個(gè)激光器的重復(fù)頻率,將其鎖定在同一個(gè)穩(wěn)定的時(shí)鐘源上...
見合八方平面波導(dǎo)外腔激光器專題系列 用于干涉光纖傳感的低噪聲平面波導(dǎo)外腔激光器2
----翻譯自Mazin Alalus等人的文章 摘要 1550 nm DWDM 平面波導(dǎo)外腔激光器具有低相位/頻率噪聲、窄線寬和低 RIN 等特點(diǎn)。該...
MICRO OLED 金屬陽極像素制作工藝對晶圓 TTV 厚度的影響機(jī)制及測量優(yōu)化
引言 在 MICRO OLED 的制造進(jìn)程中,金屬陽極像素制作工藝舉足輕重,其對晶圓總厚度偏差(TTV)厚度存在著復(fù)雜的影響機(jī)制。晶圓 TTV 厚度指標(biāo)...
上海光機(jī)所在片上穩(wěn)頻激光器研究方面取得重要進(jìn)展
圖1. (a) 集成Pound-Drever-Hall(PDH)激光頻率穩(wěn)定系統(tǒng)的框圖。(b) Si?N? 片上MZI結(jié)構(gòu)圖。(c) Si?N?片上MZ...
上海光機(jī)所在散射成像機(jī)理研究方面取得進(jìn)展
圖 1實(shí)驗(yàn)原理示意圖。(a)實(shí)驗(yàn)系統(tǒng)排布,散射介質(zhì)由兩片毛玻璃組成,層間距可以調(diào)節(jié),光透過每片毛玻璃時(shí)的彈道殘余也可控。(b)毛玻璃的彈道殘余不同的情況...
安泰電子ATA-2021B高壓放大器的電子實(shí)驗(yàn)案例(案例合集)
ATA-2021B是一款可放大交直流信號的單通道高壓放大器。最大輸出200Vp-p電壓,輸出電壓范圍可根據(jù)輸出軌調(diào)節(jié);直流偏置電壓三檔可調(diào),連續(xù)變化最大...
檸檬光子榮膺2025激光加工行業(yè)榮格技術(shù)創(chuàng)新獎(jiǎng)
近日,由榮格工業(yè)傳媒主辦的“2025激光加工行業(yè)—榮格技術(shù)創(chuàng)新獎(jiǎng)”頒獎(jiǎng)典禮在蘇州舉行。檸檬光子QuantaHeat激光器I07憑借高功率復(fù)合激光技術(shù)的突...
編輯推薦廠商產(chǎn)品技術(shù)軟件/工具OS/語言教程專題
電機(jī)控制 | DSP | 氮化鎵 | 功率放大器 | ChatGPT | 自動(dòng)駕駛 | TI | 瑞薩電子 |
BLDC | PLC | 碳化硅 | 二極管 | OpenAI | 元宇宙 | 安森美 | ADI |
無刷電機(jī) | FOC | IGBT | 逆變器 | 文心一言 | 5G | 英飛凌 | 羅姆 |
直流電機(jī) | PID | MOSFET | 傳感器 | 人工智能 | 物聯(lián)網(wǎng) | NXP | 賽靈思 |
步進(jìn)電機(jī) | SPWM | 充電樁 | IPM | 機(jī)器視覺 | 無人機(jī) | 三菱電機(jī) | ST |
伺服電機(jī) | SVPWM | 光伏發(fā)電 | UPS | AR | 智能電網(wǎng) | 國民技術(shù) | Microchip |
Arduino | BeagleBone | 樹莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 華秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |