完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>
標簽 > 鋰金屬電池
鋰金屬電池是脫胎于麻省理工學院的SolidEngergy開發,這一技術能將當前鋰電池的體積縮小一半,未來可以用于電動汽車。
文章:137個 瀏覽:4557次 帖子:0個
在堿性或中性電解質中,由固-液(StoL)鋅溶解和液-固(LtoS)鋅電沉積產生的DLA仍然沒有解決。
使用鋰金屬負極和高壓正極的鋰金屬電池(LMB)被認為是最有前途的高能量密度電池技術之一。
高能鋰金屬電池的關鍵挑戰是樹枝狀鋰的形成、差的CE以及與高壓正極的兼容性問題。為了解決這些問題,一個核心策略是設計新型電解質。
鋰離子(Li+)、鈉離子(Na+)等單價堿金屬離子是可充電二次電池中具有重要現實意義的基本電荷載體,為全球現代化建設奠定了基礎。
全固態鋰金屬電池有望同時實現高能量密度和高安全性因此引起了人們的廣泛關注。但是,電池實現高能量密度的前提是必須有合適的正負極容量配比(或簡稱低的負極/正...
具有不同配方的電解液體系顯著影響了鋰金屬電池的整體性能。目前來說,除了改變電解液溶劑的組合或探索功能性添加劑之外,對電解液濃度的調節似乎是備受關注的新流行趨勢。
【研究背景】近年來,固態鋰金屬電池因其具有高能量密度、高安全性和長循環壽命而引起了廣泛的關注。其中聚合物基固態電解質因具有良好的界面兼容性,被認為是易于...
這項工作從根本上解釋了鋰合金的親鋰位點對鋰電鍍過程的影響,并提出可以通過設計具有多親鋰位點的三維鋰合金來引導均勻的鋰沉積防止鋰枝晶的形成。
首先,這項工作基于雙氟磺酰胺鋰(LiFSI)和乙二醇二甲醚(DME)構建了LHCE中溶劑化結構的模型(圖1A),并通過實驗驗證了惰性非溶劑能否作為稀釋劑...
石榴石型電解質由于其高離子傳導性和寬廣的電化學窗口,在固態鋰電池的應用中表明出巨大的潛力。
編輯推薦廠商產品技術軟件/工具OS/語言教程專題
電機控制 | DSP | 氮化鎵 | 功率放大器 | ChatGPT | 自動駕駛 | TI | 瑞薩電子 |
BLDC | PLC | 碳化硅 | 二極管 | OpenAI | 元宇宙 | 安森美 | ADI |
無刷電機 | FOC | IGBT | 逆變器 | 文心一言 | 5G | 英飛凌 | 羅姆 |
直流電機 | PID | MOSFET | 傳感器 | 人工智能 | 物聯網 | NXP | 賽靈思 |
步進電機 | SPWM | 充電樁 | IPM | 機器視覺 | 無人機 | 三菱電機 | ST |
伺服電機 | SVPWM | 光伏發電 | UPS | AR | 智能電網 | 國民技術 | Microchip |
開關電源 | 步進電機 | 無線充電 | LabVIEW | EMC | PLC | OLED | 單片機 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 藍牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太網 | 仿真器 | RISC | RAM | 寄存器 | GPU |
語音識別 | 萬用表 | CPLD | 耦合 | 電路仿真 | 電容濾波 | 保護電路 | 看門狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 閾值電壓 | UART | 機器學習 | TensorFlow |
Arduino | BeagleBone | 樹莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 華秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |