完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>
標簽 > PCB設計
印制電路板的設計是以電路原理圖為根據,實現電路設計者所需要的功能。印刷電路板的設計主要指版圖設計,需要考慮外部連接的布局。內部電子元件的優化布局。金屬連線和通孔的優化布局。電磁保護。熱耗散等各種因素。優秀的版圖設計可以節約生產成本,達到良好的電路性能和散熱性能。簡單的版圖設計可以用手工實現,復雜的版圖設計需要借助計算機輔助設計(CAD)實現。
印制電路板的設計是以電路原理圖為根據,實現電路設計者所需要的功能。印刷電路板的設計主要指版圖設計,需要考慮外部連接的布局。內部電子元件的優化布局。金屬連線和通孔的優化布局。電磁保護。熱耗散等各種因素。優秀的版圖設計可以節約生產成本,達到良好的電路性能和散熱性能。簡單的版圖設計可以用手工實現,復雜的版圖設計需要借助計算機輔助設計(CAD)實現。
印制電路板的設計是以電路原理圖為根據,實現電路設計者所需要的功能。印刷電路板的設計主要指版圖設計,需要考慮外部連接的布局。內部電子元件的優化布局。金屬連線和通孔的優化布局。電磁保護。熱耗散等各種因素。優秀的版圖設計可以節約生產成本,達到良好的電路性能和散熱性能。簡單的版圖設計可以用手工實現,復雜的版圖設計需要借助計算機輔助設計(CAD)實現。
設計步驟
布局設計
在PCB中,特殊的元器件是指高頻部分的關鍵元器件、電路中的核心元器件、易受干擾的元器件、帶高壓的元器件、發熱量大的元器件,以及一些異性元器 件,這些特殊元器件的位置需要仔細分析,做帶布局合乎電路功能的要求及生產的需求。不恰當的放置他們可能產生電路兼容問題、信號完整性問題,從而導致 PCB設計的失敗。
在設計中如何放置特殊元器件時首先考慮PCB尺寸大小。快易購指出pcb尺寸過大時,印刷線條長,阻抗增加,抗燥能力下降,成本也增加;過小時,散熱不好,且臨近線條容易受干擾。在確定PCB的尺寸后,在確定特殊元件的擺方位置。最后,根據功能單元,對電路的全部元器件進行布局。特殊元器件的位置在布局時一般 要遵守以下原則:
1、盡可能縮短高頻元器件之間的連接,設法減少他們的分布參數及和相互間的電磁干擾。易受干擾的元器件不能相互離的太近,輸入和輸出應盡量遠離。
2一些元器件或導線有可能有較高的電位差,應加大他們的距離,以免放電引起意外短路。高電壓的元器件應盡量放在手觸及不到的地方。
3、重量超過15G的元器件,可用支架加以固定,然后焊接。那些又重又熱的元器件,不應放到電路板上,應放到主機箱的底版上,且考慮散熱問題。熱敏元器件應遠離發熱元器件。
4、對與電位器、可調電感線圈、可變電容器、微動開關等可調元器件的布局應考慮整塊扳子的結構要求,一些經常用到的開關,在結構允許的情況下,應放置到手容易接觸到的地方。元器件的布局到均衡,疏密有度,不能頭重腳輕。
一個產品的成功,一是要注重內在質量。而是要兼顧整體的美觀,兩者都比較完美的扳子,才能成為成功的產品。
放置順序
1、放置與結構有緊密配合的元器件,如電源插座、指示燈、開關、連接器等。
2、放置特殊元器件,如大的元器件、重的元器件、發熱元器件、變壓器、IC等。
3、放置小的元器件。
布局檢查
1、電路板尺寸和圖紙要求加工尺寸是否相符合。
2、元器件的布局是否均衡、排列整齊、是否已經全部布完。
3、各個層面有無沖突。如元器件、外框、需要私印的層面是否合理。
3、常用到的元器件是否方便使用。如開關、插件板插入設備、須經常更換的元器件等。
4、熱敏元器件與發熱元器件距離是否合理。
5、散熱性是否良好。
6、線路的干擾問題是否需要考慮。
設計在不同階段需要進行不同的各點設置,在布局階段可以采用大格點進行器件布局;
對于IC、非定位接插件等大器件,可以選用50~100mil的格點精度進行布局,而對于電阻電容和電感等無源小器件,可采用25mil的格點進行布局。大格點的精度有利于器件的對齊和布局的美觀。
PCB布局規則:
1、在通常情況下,所有的元件均應布置在電路板的同一面上,只有頂層元件過密時,才能將一些高度有限并且發熱量小的器件,如貼片電阻、貼片電容、貼片IC等放在底層。
2、在保證電氣性能的前提下,元件應放置在柵格上且相互平行或垂直排列,以求整齊、美觀,在一般情況下不允許元件重疊;元件排列要緊湊,元件在整個版面上應分布均勻、疏密一致。
3、電路板上不同組件相臨焊盤圖形之間的最小間距應在1MM以上。
4、離電路板邊緣一般不小于2MM.電路板的最佳形狀為矩形,長寬比為3:2或4:3.電路板面尺大于200MM乘150MM時,應考慮電路板所能承受的機械強度。
布局技巧
在PCB的布局設計中要分析電路板的單元,依據起功能進行布局設計,對電路的全部元器件進行布局時,要符合以下原則:
1、按照電路的流程安排各個功能電路單元的位置,使布局便于信號流通,并使信號盡可能保持一致的方向。
2、以每個功能單元的核心元器件為中心,圍繞他來進行布局。元器件應均勻、整體、緊湊的排列在PCB上,盡量減少和縮短各元器件之間的引線和連接。
3、在高頻下工作的電路,要考慮元器件之間的分布參數。一般電路應盡可能使元器件并行排列,這樣不但美觀,而且裝焊容易,易于批量生產。
項目分享:樹莓派Pico (RP2040) + Cyclone 10 FPGA PCB 設計
可以將系統設置成這樣:從 RP2040 的角度看,FPGA 是完全“透明”的,就像一個內存映射 I/O(MMIO)的外設擴展。反之,我們也可以在 FPG...
從Altium到KiCad的遷移實踐:多源庫管理方案與Jobset應用技巧
“ ?如果 NCX 可以用 KiCad 設計 PCB,你的公司一定也可以!-- Jason Goldstein。 本演講記錄了一位資深電路板設計工程師從...
大佬解讀:從Altium到KiCad:將KiCad集成到專業工作流中
“ ?Eli Hughes 是 Wavenumber LLC 公司的負責人,該公司致力于在嵌入式系統、軟件、物聯網、音頻、聲學、工業設計及內容創作等領域...
Simcenter FLOEFD EDA Bridge模塊:使用導入的詳細PCB設計和IC熱特性來簡化熱分析
優勢使用導入的詳細PCB設計和集成電路熱特性進行分析,省時省力將詳細的PCB數據快速導入SimcenterFLOEFD通過更詳細的電子設備熱建模提高分析...
電子硬件工程師如何從零開始學習?(文末免費分享從零開始學習資料)
經常有用戶咨詢,如何學習和提升電子硬件能力,有沒有適合小白學習的資料等等;電子硬件工程師是一個結合理論、實踐和創新能力的職業,需要掌握電路設計、元器件選...
從“設計到生產”的蛻變:華秋DFM如何讓工程師們“輕松上陣”?
在電子設計領域,工程師們常常面臨一個“隱形的敵人”:設計與生產的脫節。比如精心設計的PCB,通過DRC檢查后,滿懷信心地送去生產,結果仍被返工:焊盤間距...
【華秋DFM】V4.6正式上線:工程師的PCB設計“好搭子”來了!
作為深耕PCB設計檢查的專業工具,華秋DFM歷經多年迭代,已從最初的基礎設計檢查工具發展為覆蓋全流程的智能制造解決方案。通過持續優化1200+細項檢查規...
趨勢觀察 高頻通信時代,Dk值為何成了PCB設計“生命線”?
在高速、高頻電路日益普及的今天,介電常數(Dk)正在成為PCB設計中繞不開的重要參數之一。尤其是在5G通信、雷達、衛星導航等領域,高頻信號對板材性能的要...
龍芯終端與合見工軟PCB設計軟件UniVista Archer成功適配
近日,龍芯3A5000/3A6000桌面終端與上海合見工業軟件集團有限公司自主研發的PCB設計軟件UniVista Archer成功適配,實現了電子系統...
高速PCB設計中揭秘DC-BIAS效應:電容“縮水”對電源噪聲的影響
高速先生成員--黃剛 ? 不可能吧?電容不還是那個電容嗎?為什么接到1V的直流電壓時和接到3.3V的直流電壓效果會不一樣?相信大多數粉絲都不知道這個po...
編輯推薦廠商產品技術軟件/工具OS/語言教程專題
電機控制 | DSP | 氮化鎵 | 功率放大器 | ChatGPT | 自動駕駛 | TI | 瑞薩電子 |
BLDC | PLC | 碳化硅 | 二極管 | OpenAI | 元宇宙 | 安森美 | ADI |
無刷電機 | FOC | IGBT | 逆變器 | 文心一言 | 5G | 英飛凌 | 羅姆 |
直流電機 | PID | MOSFET | 傳感器 | 人工智能 | 物聯網 | NXP | 賽靈思 |
步進電機 | SPWM | 充電樁 | IPM | 機器視覺 | 無人機 | 三菱電機 | ST |
伺服電機 | SVPWM | 光伏發電 | UPS | AR | 智能電網 | 國民技術 | Microchip |
開關電源 | 步進電機 | 無線充電 | LabVIEW | EMC | PLC | OLED | 單片機 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 藍牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太網 | 仿真器 | RISC | RAM | 寄存器 | GPU |
語音識別 | 萬用表 | CPLD | 耦合 | 電路仿真 | 電容濾波 | 保護電路 | 看門狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 閾值電壓 | UART | 機器學習 | TensorFlow |
Arduino | BeagleBone | 樹莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 華秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |