1 引言
RFID(Radio Frequency IDentification)技術,即射頻識別技術,是一種通信技術,目前廣泛應用于各種收費場合,例如:公共交通收費系統,停車場收費系統等等。目前使用RFID 技術的系統通常使用RS-485 和PC 端進行數據交互,但是RS-485 使用單主節點,采用輪詢方式,因此存在實時性較低和通訊效率低的問題。
隨著計算機科學水平的不斷飛躍和工業發展的需要,工業控制系統經歷了基地式儀表控制系統、集中式數字控制系統、集散控制系統到現在廣泛使用的現場總線控制系統的轉變。CAN(Controller Area Net)總線是一種基于串行通信網絡的現場總線。CAN 總線采用多主工作方式,網絡上的任意節點可以在任意時刻向網絡上的其他節點發送信息。同時,CAN 總線采用非破壞性仲裁技術,當兩個或者更多的節點同時向網絡上傳送數據,優先級低的節點將停止發送,直到優先級高的節點發送完數據后再發送,這樣有效地避免了總線競爭。CAN 通信距離最遠可達10km/5kbps,通信速率最高可大1Mbps.CAN 的每幀數據都有CRC校驗或者其它檢測方式,保證了數據通信的可靠性。
當一個CAN 節點發生嚴重錯誤時,該節點會自動關閉,從而不影響其它節點的正常工作。因此,CAN 總線具有可靠性強,實時性高和效率高等優勢,完全能夠取代RS 485 總線。
考慮到在實際應用環境中,為了減少大量的布線工作,使用2.4G 無線網絡作為數據從RFID 到CAN總線之間傳輸的中轉站。無線技術具有成本低、靈活性高、可靠性高和安裝時間短等特點。本次設計使用選用nRF24L01 組建無線通信網絡,該芯片支持多點通信,在接受模式下可以接收6 路不同通道的數據。
也就是無線網絡的接收端可以接收6 個不同發送端的數據,發送端的數據是通過RFID 模塊獲得。
基于以上的討論,本文將給出一種基于CAN 總線和2.4G 無線網絡的新型RFID 收費系統。
2 硬件系統設計
2.1 系統拓撲結構和系統組成
2.1.1 系統拓撲結構
如圖1 所示,RFID 設備的相關數據將通過無線網絡傳送至CAN 收發器,后者再將數據通過CAN 總線傳送至PC 機,PC 機采用帶有CAN 接口的PCI-E 擴展卡。此外,無線通訊芯片nRF24L01 在接受模式下可以接收6 路不同通道的數據,以此來實現一個CAN節點最多控制6 個RFID 終端設備的數據傳送。在6個RFID 收費終端不能滿足需求的情況下,可以添加更多的節點,所有節點掛載在CAN 總線上,通過CAN總線,每個節點將數據傳送至PC 端。
圖1 系統拓撲結構圖
2.1.2 系統組成
本系統(CAN 節點)有兩個子系統組成。B 子系統由單片機、RFID 模塊、無線模塊、看門狗、液晶屏、時鐘模塊、按鍵和EEPROM 組成。微控制器(MCU)控制RFID 模塊對Mifare 1 卡進行讀寫操作,無線模塊將有關的數據發送給A 子系統。A 子系統由單片機、無線模塊、看門狗和CAN 模塊組成。MCU 將經由無線模塊接收到的數據通過CAN 模塊發送至PC 端。由于一個節點最多可以控制6 個RFID 設備終端,因此在一個完整的系統里,A 子系統只有1 個,而B 子系統最多可以有6 個。
圖2 子系統A 組成框圖
圖3 子系統B 組成框圖
評論