1 引言
led顯示屏是一種迅速發展起來的新型信息顯示媒體。隨著我國經濟的不斷發展,已被廣泛應用于車站、賓館、銀行、醫院等公共場合。顯示屏電源是其重要組成部分,主要用來給顯示屏發光二極管提供必要的工作電流,保證屏體正常顯示。為簡單起見,通常采用由一小功率電源帶3到4個顯示驅動板的供電方案。這樣,一個較大面積的顯示屏需要配接許多電源模塊,例如一個2m×1.5m的屏體,就需要提供24個5V/20A的模塊電源。該設計存在以下的缺點。
1)接線復雜 每一個電源均需單獨地配置交流輸入線、直流輸出線。
2)電源冗余度差 在大多數情況下,屏體顯示內容為文字、動畫、圖片,每個顯示驅動板消耗的電流不一樣,可能某些電源模塊過載,而另一些模塊空載。此外,若某一電源失效,會造成屏體的一部分黑屏。
3)電源過載能力差,利用率低 屏體在工作時消耗的電流隨畫面的內容、顏色、亮度而變化,大部分時間電流較小,而大面積高亮度的畫面雖消耗電流大,但持續時間短。考慮到LED是恒流驅動的,只要驅動板可正常工作,供電電壓可以降低一些。電源最好有下拖形狀的限流特性,而不是通常的較陡峭形狀的限流特性,以保證有較好的過載能力、較高的利用率。
考慮到以上各點,提出新的供電方案如下:
1)集中供電,采用n+1冗余方案。
2)電源模塊設計適當的輸出電流,模塊可均流。保證屏體裝配工藝易實現n+1冗余。
3)電源模塊有下拖形狀的限流特性以保證有較好的過載能力、較高的利用率。
4)電源模塊有扁平的外形,自然散熱,易于在屏體上安裝,并利用屏體散熱。
5)電源模塊帶APFC,減小對電網的干擾,適應電網的波動。
2 電路設計
采用集中供電方案可避免分散供電的缺點,但要求電源的可靠性更高,否則電源一旦失效會造成整屏的黑屏,而不是部分黑屏。提高電源可靠性的最積極的辦法為提高變換效率,減少發熱量,同時選用可靠性高的線路與器件。
傳統的AC/DC全波整流電路采用的是整流+電容濾波電路。這種電路是一種非線性器件和儲能元件的組合,輸入交流電壓的波形是正弦的,但輸入電流的波形發生了嚴重的畸變,呈脈沖狀。由此產生的諧波電流對電網有危害作用,使電源輸入功率因素下降。在本設計中整流電路部分采用有源功率因數校正電路(APFC),避免了上述缺點。其電路如圖1所示。
圖1 PFC無損吸收主電路
與典型PFC主電路不同的是此電路選用了無損吸收緩沖網絡。該網絡降低了開關管的開關損耗,提高了其穩定性,增強了其使用壽命。它利用一組無源元件,使開關管實現了零電流開通和零電壓關斷,提高了電源的工作效率,且相對于其它諧振軟開關電路,降低了生產成本。
下面通過分析PFC主開關Q的工作過程來說明此無損吸收緩沖網絡的工作原理。
1)Q導通時,因為電感L2中電流不能突變,且C2、C1電壓不能突變,Q中的的電流從零開始增加,緩慢上升。通過D4的電流iD4漸減。Q實現零電流開通,導通的損耗較小。
2)當電流iD4減少為零時,D4進入反向恢復狀態,通過電感L2的電流iL2=iL1+irD4。D4反向電流irD4的變化率受到電感L2的控制,反向恢復損耗降低。
3)主電感L2中電流緩慢增加,Q上的電壓uQ下降。電容C2通過D2、C1、L2、Q放電,C2上的電壓uC2下降。
4)當uC2下降為零時,C2中的能量完全轉向C1、L2。L2中的電流飽和不變,uQ下降變為零,Q完成零電流開通過程。
5)Q保持開通狀態,與普通PFC電路的開關管狀態相同。
6)Q關斷時,L2中的電流iL2通過D1流向C2,C2從零開始充電,Q實現零電壓關斷,關斷損耗較小。二極管D2、D3使uC2最終鉗位在輸出電壓VL。
7)L2在導通時存儲的能量通過D1、D2流向C1,L2逐漸復位。當L2復位后,C1中的能量通過D3輸出。
8)當C1兩端電壓變為零時,D4正向導通。Q完成零電壓關斷過程。
9)Q保持關斷狀態直到開始進入新的開關循環過程。
Q的開關波形如圖2所示;Q的實測導通時間和關斷時間如圖3所示。(電源負載22A)
圖2 Q的D-S極之間開關波形
圖3 Q的導通時間和關斷時間
從以上分析可知此無損吸收網絡具有以下幾個特點。
1)Q的最大工作電壓等于輸出電壓VL。
2)PFC電路的輸出二極管D4的耐壓是VL與電感L2的反向電壓之和。
3)Q中的電流上升率,即Q的開通損耗決定于電感L2兩端電壓和L2的電感量。
4)Q兩端的電壓上升率,即Q的關斷損耗決定于流過電容C2的電流和C2的容量。
5)由于開關動作引起的存儲在L2和C2中的能量最終都輸出給了負載,保證了轉換器的工作效率。
2.2 DC/DC主電路設計
DC/DC主電路采用單端雙正激電路。單端雙正激電路相對于其它拓撲電路結構,開關管承受電壓低,在控制電路設計中不必擔心共態導通問題,也不會因電路不對稱發生高頻變壓器單向偏磁,即不存在變壓器飽和問題,是一種可靠性較高的電路。考慮到整機的高度不超過60mm,以及變壓器工藝、安裝、散熱的要求,DC/DC變換采用雙變壓器、雙輸出電感結構。變壓器原邊并聯,副邊各自用一個輸出電感,如圖4所示。
圖4 雙正激無損吸收主電路
該電路的無損吸收網絡不同于AC/DC部分電路所采用的無損吸收網絡。它僅使開關管完成了零電壓關斷過程。以下以開關Q2為例(Q1與Q2變化狀態相同),簡述該網絡的工作原理。
1)導通過程
Q1、Q2開通時,除一路電流通過Q1、T1副邊、Q2外,另一路電流流過Q1、C5、L7、D10、C7、Q2形成LC振蕩回路,C5、C7被充電。當A與B點之間的電壓uAB等于主電路電壓VDC時,由于D10的單向導電性,振蕩結束。電感L7起限制C7、C5中的電流變化的作用。Q1、Q2中流過的電流為從副邊折算到原邊的負載電流與C5、C7充電電流之和。
2)關斷過程
Q1、Q2關斷時,由于B點對地電壓為零,C7從零開始充電,Q2對地電壓uQ2緩慢上升,Q2零電壓關斷。加在Q2上的電壓因二極管D15的鉗位作用,最終為VDC。因此,B點電壓升為VDC。Q2實現零電壓關斷過程。
由于變壓器勵磁電感、漏感及引線寄生電感所引起的感應電勢的能量通過C7、D14返回電源,Q2上的電壓維持在VDC直到變壓器原邊磁通復位。此時,Q1、Q2上的電壓分別為VDC/2直到新的工作周期。
Q2的開通期間與關斷期間的狀態與普通開關管同期間的狀態相同。
圖5為實測Q2開關波形。圖6為實測Q2零電壓關斷波形。
圖5 Q2的D-S極開關波形
圖6 Q2的關斷時間
從以上分析中,可以總結出以下特點。
1)電路中每個開關管的最大工作電壓等于電源電壓。
2)Q1、Q2關斷的電壓上升率分別決定于電容C5、C7的容量。
2.3 控制電路設計
為保證電源安全可靠地工作,電路設計中采用TOP224Y制作一反激式開關電源作為輔助源,如圖7所示。其兩路輸出分別為AC/DC部分和DC/DC部分的控制電路供電。
圖7 輔助電源電路
AC/DC控制部分使用PFC控制芯片UC3854B。交流輸入過、欠壓、PFC變換直流電壓(400V)過、欠壓時都關閉UC3854,使PFC部分停止工作。這些故障信號通過隔離光耦傳遞到DC/DC控制電路,以達到在AC/DC部分工作不正常時保護主開關管的目的。
DC/DC控制部分使用了PWM控制芯片UC3846,采用峰值電流型控制模式。峰值電流型控制模式相對于電壓控制模式,負載響應速率快,具有逐脈沖限流特性,容易獲得下拖形狀的限流特性,非常適合在此應用。
n+1冗余應用時,多模塊必須有均流功能。該電源輸出電流較大,直接從DC輸出用分流器取電流信號功率損耗較大,同時裝配工藝較復雜。因此,本設計采取了原邊電流合成的方法。
用電流傳感器取出開關管導通時變壓器原邊的電流信號。該信號包含了變壓器的勵磁電流信號與輸出電感電流折算到變壓器原邊的電流信號。因輸出電感折算到原邊的電流遠大于變壓器的勵磁電流,所以可認為電流傳感器取出的即為輸出電感的充磁電流。這是輸出電感電流的上升部分,只要模擬出輸出電感續流時的下降部分,合成后即可得到輸出電感的電流信號,也為輸出電流信號。取出該合成后的電流信號后就可用于電流保護的控制與均流控制上了。
如圖8所示,把電流傳感器取出的電流信號經高速單向緩沖后向一電容充電。開關管導通時關閉恒流源,而開關管關斷時打開恒流源對電容恒流放電。在選擇合適的電路參數后,電容上的電壓波形就與輸出電感上的電流成比例,放大后就可得到輸出電感電流,也即輸出電流。
圖8 輸出電流合成電路
3 實驗結果
對樣機的測試指標如下
輸入電壓范圍 AC150~270V
輸出電壓范圍 DC4.6~6.3V
輸出電流 120A
效率 80%
散熱方式 自然散熱
限流特性 下拖
厚度 60mm,可安裝在led顯示屏體上
用兩臺樣機試驗均流如下:
A機5.6V B機5.3V不接均流線B機不工作
A機5.6V B機5.3V接均流線A機輸出34A,B機輸出33A。
4 結語
隨著這種電源應用量的不斷增加,證明出其具有較高的工作效率和良好的可靠性,是一種性價比較高的產品。
責任編輯;zl
評論