女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何從龐大的客戶車隊中獲取訓(xùn)練數(shù)據(jù),以訓(xùn)練其自動駕駛神經(jīng)網(wǎng)絡(luò)

倩倩 ? 來源:半導(dǎo)體投資聯(lián)盟 ? 2020-04-17 09:36 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

據(jù)外媒Electrek報道,特斯拉于近日申請了一項專利,即如何從龐大的客戶車隊中獲取訓(xùn)練數(shù)據(jù),以訓(xùn)練其自動駕駛神經(jīng)網(wǎng)絡(luò)

據(jù)悉,特斯拉人工智能和自動駕駛軟件負(fù)責(zé)人Andrej Karpathy是該專利的唯一發(fā)明人。Karpathy指出了在應(yīng)用程序中為深度學(xué)習(xí)培訓(xùn)收集數(shù)據(jù)的難點:“用于自動駕駛等應(yīng)用的深度學(xué)習(xí)系統(tǒng)是通過訓(xùn)練機(jī)器學(xué)習(xí)模型來開發(fā)的。通常深度學(xué)習(xí)系統(tǒng)的性能在一定程度上受制于訓(xùn)練集的質(zhì)量。在大多數(shù)情況下,在收集、管理和注釋培訓(xùn)數(shù)據(jù)方面需要投入大量資源,創(chuàng)建訓(xùn)練集的工作因此很重要且繁瑣。此外,通常很難為機(jī)器學(xué)習(xí)模型需要改進(jìn)的特定用例收集數(shù)據(jù)。”

值得一提的是,特斯拉開發(fā)自動駕駛系統(tǒng)的方法與大多數(shù)汽車公司大相徑庭。大多數(shù)汽車公司使用相對較小的測試車輛車隊來收集數(shù)據(jù)和測試其系統(tǒng),而特斯拉則利用配備了一系列傳感器的數(shù)十萬客戶車輛來收集道路和駕駛數(shù)據(jù),并在“陰影模式”下測試自動駕駛系統(tǒng),因此,車隊收集的這些數(shù)據(jù)對于特斯拉訓(xùn)練神經(jīng)網(wǎng)絡(luò)進(jìn)行自動駕駛是非常有價值的。

Karpathy在專利中提到,“隨著機(jī)器學(xué)習(xí)模型變得越來越復(fù)雜,例如更深層次的神經(jīng)網(wǎng)絡(luò),大型訓(xùn)練數(shù)據(jù)集的必要性也相應(yīng)增加。與較淺的神經(jīng)網(wǎng)絡(luò)相比,這些較深的神經(jīng)網(wǎng)絡(luò)可能需要更多的訓(xùn)練實例,以確保其通用性。”

因此,工程師解釋了其專利方法,即在傳輸潛在培訓(xùn)數(shù)據(jù)之前,先對數(shù)據(jù)源進(jìn)行分類。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 傳感器
    +關(guān)注

    關(guān)注

    2565

    文章

    52861

    瀏覽量

    766170
  • 特斯拉
    +關(guān)注

    關(guān)注

    66

    文章

    6378

    瀏覽量

    128977
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8500

    瀏覽量

    134425
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    自動駕駛感知系統(tǒng)卷積神經(jīng)網(wǎng)絡(luò)原理的疑點分析

    和語音識別等領(lǐng)域取得了顯著成就,并廣泛用于車輛自動駕駛的圖像目標(biāo)識別。 1.局部連接:CNN通過局部連接的方式減少了網(wǎng)絡(luò)自由參數(shù)的個數(shù),從而降低了計算復(fù)雜度,并使網(wǎng)絡(luò)更易于
    的頭像 發(fā)表于 04-07 09:15 ?334次閱讀
    <b class='flag-5'>自動駕駛</b>感知系統(tǒng)<b class='flag-5'>中</b>卷積<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>原理的疑點分析

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點分析

    自學(xué)習(xí)能力 : BP神經(jīng)網(wǎng)絡(luò)能夠通過訓(xùn)練數(shù)據(jù)自動調(diào)整網(wǎng)絡(luò)參數(shù),實現(xiàn)對輸入數(shù)據(jù)的分類、回歸等任務(wù)
    的頭像 發(fā)表于 02-12 15:36 ?874次閱讀

    如何訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)模型

    BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)是一種經(jīng)典的人工神經(jīng)網(wǎng)絡(luò)模型,訓(xùn)練過程主要分為兩個階段:前向傳播和反向傳播。以下是訓(xùn)練BP
    的頭像 發(fā)表于 02-12 15:10 ?863次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)訓(xùn)練數(shù)據(jù)準(zhǔn)備方法

    LSTM(Long Short-Term Memory,長短期記憶)神經(jīng)網(wǎng)絡(luò)訓(xùn)練數(shù)據(jù)準(zhǔn)備方法是一個關(guān)鍵步驟,它直接影響到模型的性能和效果。以下是一些關(guān)于LSTM神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-13 10:08 ?2058次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    取特征的強(qiáng)大工具,例如識別音頻信號或圖像信號的復(fù)雜模式就是應(yīng)用之一。 1、什么是卷積神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)是一種由神經(jīng)元組成的系統(tǒng)或結(jié)構(gòu)
    發(fā)表于 10-24 13:56

    FPGA在自動駕駛領(lǐng)域有哪些應(yīng)用?

    數(shù)據(jù)處理和預(yù)處理,實現(xiàn)實時計算和反饋。 二、數(shù)據(jù)傳輸與處理FPGA在自動駕駛扮演著數(shù)據(jù)傳輸和處理的角色。它能夠支持多種傳感器(如激光雷達(dá)
    發(fā)表于 07-29 17:09

    Python自動訓(xùn)練人工神經(jīng)網(wǎng)絡(luò)

    人工神經(jīng)網(wǎng)絡(luò)(ANN)是機(jī)器學(xué)習(xí)中一種重要的模型,它模仿了人腦神經(jīng)元的工作方式,通過多層節(jié)點(神經(jīng)元)之間的連接和權(quán)重調(diào)整來學(xué)習(xí)和解決問題。Python由于強(qiáng)大的庫支持(如Tenso
    的頭像 發(fā)表于 07-19 11:54 ?679次閱讀

    如何使用經(jīng)過訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型

    使用經(jīng)過訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型是一個涉及多個步驟的過程,包括數(shù)據(jù)準(zhǔn)備、模型加載、預(yù)測執(zhí)行以及后續(xù)優(yōu)化等。
    的頭像 發(fā)表于 07-12 11:43 ?1883次閱讀

    脈沖神經(jīng)網(wǎng)絡(luò)怎么訓(xùn)練

    脈沖神經(jīng)網(wǎng)絡(luò)(SNN, Spiking Neural Network)的訓(xùn)練是一個復(fù)雜但充滿挑戰(zhàn)的過程,它模擬了生物神經(jīng)元通過脈沖(或稱為尖峰)進(jìn)行信息傳遞的方式。以下是對脈沖神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-12 10:13 ?1186次閱讀

    BP神經(jīng)網(wǎng)絡(luò)樣本的獲取方法

    訓(xùn)練樣本是至關(guān)重要的。 數(shù)據(jù)收集 數(shù)據(jù)收集是構(gòu)建BP神經(jīng)網(wǎng)絡(luò)模型的第一步。根據(jù)研究領(lǐng)域和應(yīng)用場景的不同,數(shù)據(jù)來源可以分為以下幾種: 1.1
    的頭像 發(fā)表于 07-11 10:50 ?1033次閱讀

    20個數(shù)據(jù)可以訓(xùn)練神經(jīng)網(wǎng)絡(luò)

    當(dāng)然可以,20個數(shù)據(jù)點對于訓(xùn)練一個神經(jīng)網(wǎng)絡(luò)來說可能非常有限,但這并不意味著它們不能用于訓(xùn)練。實際上,神經(jīng)網(wǎng)絡(luò)可以
    的頭像 發(fā)表于 07-11 10:29 ?1783次閱讀

    怎么對神經(jīng)網(wǎng)絡(luò)重新訓(xùn)練

    發(fā)生變化,導(dǎo)致神經(jīng)網(wǎng)絡(luò)的泛化能力下降。為了保持神經(jīng)網(wǎng)絡(luò)的性能,需要對進(jìn)行重新訓(xùn)練。本文將詳細(xì)介紹重新訓(xùn)練
    的頭像 發(fā)表于 07-11 10:25 ?843次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)和訓(xùn)練過程

    BP神經(jīng)網(wǎng)絡(luò),全稱為反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network),是一種在機(jī)器學(xué)習(xí)、數(shù)據(jù)挖掘和模式識別等領(lǐng)域廣泛應(yīng)用的人工神經(jīng)網(wǎng)絡(luò)模型。
    的頭像 發(fā)表于 07-10 15:07 ?7871次閱讀
    BP<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的基本結(jié)構(gòu)和<b class='flag-5'>訓(xùn)練</b>過程

    神經(jīng)網(wǎng)絡(luò)如何用無監(jiān)督算法訓(xùn)練

    神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的重要組成部分,訓(xùn)練方式多樣,其中無監(jiān)督學(xué)習(xí)是一種重要的訓(xùn)練策略。無監(jiān)督學(xué)習(xí)旨在從未標(biāo)記的數(shù)據(jù)中發(fā)現(xiàn)
    的頭像 發(fā)表于 07-09 18:06 ?1463次閱讀

    如何利用Matlab進(jìn)行神經(jīng)網(wǎng)絡(luò)訓(xùn)練

    ,使得神經(jīng)網(wǎng)絡(luò)的創(chuàng)建、訓(xùn)練和仿真變得更加便捷。本文將詳細(xì)介紹如何利用Matlab進(jìn)行神經(jīng)網(wǎng)絡(luò)訓(xùn)練,包括網(wǎng)絡(luò)創(chuàng)建、
    的頭像 發(fā)表于 07-08 18:26 ?3621次閱讀
    主站蜘蛛池模板: 资兴市| 灵璧县| 宁安市| 瑞金市| 浙江省| 女性| 和硕县| 新沂市| 藁城市| 莱西市| 迁安市| 青冈县| 隆回县| 罗平县| 浏阳市| 九龙县| 开阳县| 黔西| 上杭县| 蓝田县| 南投市| 和顺县| 定陶县| 枣阳市| 从化市| 蒲江县| 水城县| 武汉市| 清丰县| 南岸区| 泸定县| 扬中市| 来安县| 凌源市| 清河县| 元朗区| 定西市| 德昌县| 吉林市| 抚宁县| 浠水县|