女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

淺談機器學習技術中的隨機森林算法

454398 ? 來源:itpub技術棧 ? 作者:sandag ? 2020-09-29 15:34 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

本次主題是隨機森林,杰里米(講師)提供了一些基本信息以及使用Jupyter Notebook的提示和技巧。

Jeremy談到的一些重要的事情是,數據科學并不等同于軟件工程。 在數據科學中,我們做的是設計模型。 雖然軟件工程有自己的一套實踐,但數據科學也有自己的一套最佳實踐。

模型構建和原型設計需要一個交互的環境,是一個迭代的過程。 我們建立一個模型。 然后,我們采取措施來改善它。 重復直到我們對結果滿意為止。

隨機森林

我聽說過“隨機森林”這個詞,我知道它是現有的機器學習技術之一,但是老實說,我從來沒有想過要去了解它。 我一直熱衷于更多地了解深度學習技術。

從這次演講中,我了解到隨機森林確實很棒。

它就像一個通用的機器學習技術,既可以用于回歸,也可以用于分類。 這意味著你可以使用隨機森林來預測股票價格以及對給定的醫療數據樣本進行分類。

一般來說,隨機森林模型不會過擬合,即使它會,它也很容易阻止過擬合。

對于隨機森林模型,不需要單獨的驗證集。

隨機森林只有一些統計假設。 它也不假設你的數據是正態分布的,也不假設這些關系是線性的。

它只需要很少的特征工程。

因此,如果你是機器學習的新手,它可以是一個很好的起點。

其他概念

維數詛咒是一個概念,意思是你擁有的數據特征越多,數據點就會越分散。 這意味著兩點之間的距離沒有意義。

Jeremy確信,在實踐中,情況并非如此,事實上,你的數據擁有的特征越多,對模型的訓練效果就越好。

沒有免費午餐定理是這樣一個概念:沒有一個模型可以完美地適用于任何類型的數據。

技巧和竅門

你可以在Jupyter Notebook中使用!來執行bash命令,例如。

!ls

!mkdir new_dr

Python 3.6中追加字符串的新方法。

name = ‘Sabina’

print(f‘Hello {name}’)no_of_new_msg = 11

print(f‘Hello {name}, you have {no_of_new_msg} new messages’)

不需要離開Jupyter notebook就可以查看python函數。在函數名前使用?獲取它的文檔。

from sklearn.ensemble import RandomForestClassifier?RandomForestClassifier.fit()

如果你想閱讀源代碼,可以使用??在函數名稱前。

from sklearn.ensemble import RandomForestClassifier??RandomForestClassifier.fit()

通過使用to_feather方法保存處理過的數據集,將數據集以存儲在RAM中的相同格式保存到磁盤。可以使用read_feather方法從保存的文件中讀取數據。注意,為了使用這些方法,你需要安feather-format庫。

import pandasdf = pd.DataFrame()

df.to_feather(‘filename’)saved_df= pd.read_feather(‘filename’)

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 機器學習
    +關注

    關注

    66

    文章

    8500

    瀏覽量

    134446
  • 深度學習
    +關注

    關注

    73

    文章

    5558

    瀏覽量

    122720
  • 隨機森林
    +關注

    關注

    1

    文章

    22

    瀏覽量

    4368
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    【「# ROS 2智能機器人開發實踐」閱讀體驗】視覺實現的基礎算法的應用

    學習建議 對于初學者,建議先通過仿真(如Gazebo)驗證算法,再遷移到真實機器人,以降低硬件調試成本。 多參與開源社區(如ROS2的GitHub項目),學習前沿
    發表于 05-03 19:41

    **【技術干貨】Nordic nRF54系列芯片:傳感器數據采集與AI機器學習的完美結合**

    和更多外設接口。無論是運行還是休眠狀態,功耗表現都非常出色! 3. 在傳感器數據采集與AI機器學習的優勢? 答:主頻高、功耗低,內置專用核處理數據采集,還配備AI加速器,讓AI算法
    發表于 04-01 00:00

    請問STM32部署機器學習算法硬件至少要使用哪個系列的芯片?

    STM32部署機器學習算法硬件至少要使用哪個系列的芯片?
    發表于 03-13 07:34

    機器學習模型市場前景如何

    當今,隨著算法的不斷優化、數據量的爆炸式增長以及計算能力的飛速提升,機器學習模型的市場前景愈發廣闊。下面,AI部落小編將探討機器學習模型市場
    的頭像 發表于 02-13 09:39 ?347次閱讀

    華為云 Flexus X 實例部署安裝 Jupyter Notebook,學習 AI,機器學習算法

    前言 由于本人最近在學習一些機器算法,AI 算法的知識,需要搭建一個學習環境,所以就在最近購買的華為云 Flexus X 實例上安裝了
    的頭像 發表于 01-02 13:43 ?515次閱讀
    華為云 Flexus X 實例部署安裝 Jupyter Notebook,<b class='flag-5'>學習</b> AI,<b class='flag-5'>機器</b><b class='flag-5'>學習</b><b class='flag-5'>算法</b>

    傳統機器學習方法和應用指導

    在上一篇文章,我們介紹了機器學習的關鍵概念術語。在本文中,我們會介紹傳統機器學習的基礎知識和多種算法
    的頭像 發表于 12-30 09:16 ?1145次閱讀
    傳統<b class='flag-5'>機器</b><b class='flag-5'>學習</b>方法和應用指導

    zeta在機器學習的應用 zeta的優缺點分析

    在探討ZETA在機器學習的應用以及ZETA的優缺點時,需要明確的是,ZETA一詞在不同領域可能有不同的含義和應用。以下是根據不同領域的ZETA進行的分析: 一、ZETA在機器
    的頭像 發表于 12-20 09:11 ?1108次閱讀

    NPU與機器學習算法的關系

    在人工智能領域,機器學習算法是實現智能系統的核心。隨著數據量的激增和算法復雜度的提升,對計算資源的需求也在不斷增長。NPU作為一種專門為深度學習
    的頭像 發表于 11-15 09:19 ?1177次閱讀

    eda在機器學習的應用

    機器學習項目中,數據預處理和理解是成功構建模型的關鍵。探索性數據分析(EDA)是這一過程不可或缺的一部分。 1. 數據清洗 數據清洗 是機器學習
    的頭像 發表于 11-13 10:42 ?874次閱讀

    人工智能、機器學習和深度學習存在什么區別

    人工智能指的是在某種程度上顯示出類似人類智能的設備。AI有很多技術,但其中一個很大的子集是機器學習——讓算法從數據中學習
    發表于 10-24 17:22 ?2928次閱讀
    人工智能、<b class='flag-5'>機器</b><b class='flag-5'>學習</b>和深度<b class='flag-5'>學習</b>存在什么區別

    【「時間序列與機器學習」閱讀體驗】全書概覽與時間序列概述

    如何通過根因分析技術獲得導致故障的維度和元素,包括基于時間序列異常檢測算法的根因分析、基于熵的根因分析、基于樹模型的根因分析、規則學習等。 ●第7章“智能運維的應用場景”:介紹智能運維領域的應用,包括
    發表于 08-07 23:03

    計算機視覺技術的AI算法模型

    技術AI算法模型,包括卷積神經網絡(CNN)、循環神經網絡(RNN)、支持向量機(SVM)、卡爾曼濾波器(Kalman Filter)和隨機森林(Random Forest)等,并對它
    的頭像 發表于 07-24 12:46 ?1754次閱讀

    深度學習算法在集成電路測試的應用

    隨著半導體技術的快速發展,集成電路(IC)的復雜性和集成度不斷提高,對測試技術的要求也日益增加。深度學習算法作為一種強大的數據處理和模式識別工具,在集成電路測試領域展現出了巨大的應用潛
    的頭像 發表于 07-15 09:48 ?1823次閱讀

    機器學習的數據分割方法

    機器學習,數據分割是一項至關重要的任務,它直接影響到模型的訓練效果、泛化能力以及最終的性能評估。本文將從多個方面詳細探討機器學習
    的頭像 發表于 07-10 16:10 ?3131次閱讀

    深度學習在工業機器視覺檢測的應用

    隨著深度學習技術的快速發展,其在工業機器視覺檢測的應用日益廣泛,并展現出巨大的潛力。工業機器視覺檢測是工業自動化領域的重要組成部分,通過圖
    的頭像 發表于 07-08 10:40 ?1939次閱讀
    主站蜘蛛池模板: 平阴县| 游戏| 正宁县| 开平市| 瓮安县| 曲麻莱县| 奈曼旗| 垫江县| 双鸭山市| 南部县| 越西县| 赣州市| 鄂尔多斯市| 右玉县| 西充县| 黔东| 鄢陵县| 商洛市| 晋城| 古田县| 西林县| 海晏县| 当涂县| 桂阳县| 昌黎县| 锡林浩特市| 瑞昌市| 民权县| 正安县| 越西县| 改则县| 兴义市| 防城港市| 囊谦县| 稻城县| 仪陇县| 郎溪县| 寿光市| 鄄城县| 青阳县| 乌恰县|