女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

邊緣計算的未來是MCU上的深度學習

電子設計 ? 來源:電子設計 ? 作者:電子設計 ? 2020-10-30 06:43 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

就在幾年前,人們普遍認為,機器學習(ML)甚至深度學習(DL)只能通過由網關、邊緣服務器或數據中心執行的邊緣訓練和推理,在高端硬件上完成。這種想法在當時不無道理,因為在云端和邊緣之間分配計算資源的趨勢尚處于早期發展階段。但如今,得益于業界和學術界的艱苦研發和不懈努力,情況已然發生了翻天覆地的變化。

處理器不必提供每秒數萬億次操作(TOPS),也能執行機器學習(ML)。越來越多的用例證明,只要使用最新的微控制器(部分帶有嵌入式 ML 加速器),就能在邊緣設備上開展機器學習。

只需極低的成本和極低的功耗,這些設備就能出色地完成 ML,僅在絕對必要時才連接到云。簡而言之,內置 ML 加速器的微控制器代表著物聯網發展的下一階段:在生產數據的源頭,例如麥克風、攝像頭和監控其他環境條件的傳感器中引入智能計算,并使物聯網應用受益。

邊緣有多深?

目前普遍認為邊緣是物聯網網絡的最遠點,但通常指先進的網關或邊緣服務器。不過,這并不是邊緣的盡頭。真正的盡頭是鄰近用戶的傳感器。所以,合乎邏輯的做法是將盡可能多的分析能力安排在鄰近用戶的位置,而這也正是微處理器所擅長的。


不同寬度乘數下的多個 MobileNet V1 模型。寬度乘數對參數的數量、計算結果和精度都有顯著影響。但是,如果只是將寬度乘數從 1.0 改為 0.75,TOP-1 精度并無太大變化,參數的數量和算力需求卻明顯不同。

可以說,單板計算機也能用于邊緣處理,因為它們具有出色的性能,其集群可媲美一臺小型超級計算機。但問題是尺寸依然過大,而且對于大規模應用所需的成百上千次部署而言,成本過于高昂。它們還需要連接外部直流電源,在某些情況下可能超出可用范圍;相比之下,MCU 的功耗只有幾毫瓦,并且可以使用紐扣電池或一些太陽能電池來供電。

毫無意外,用于在邊緣執行 ML 的微控制器成為了十分熱門的研發領域。甚至還有專有名稱– TinyML。TinyML 的目標就是允許在資源受限的小型低功耗設備(尤其是微控制器),而不是在更大的平臺或云端上執行模型推理,甚至最終能實現模型訓練。這就需要縮小神經網絡模型的尺寸,以容納這些設備中相對較少的算力、存儲空間和帶寬資源,同時不會嚴重降低功能性和精度。

這些方案對資源進行了優化,使設備可以采集充足的傳感器數據并發揮恰當作用,同時微調精度并降低資源要求。因此,雖然數據可能仍被發送到云端(或者可能是先發送到邊緣網關,然后再發送到云端),但數量少得多,因為相當大一部分的分析已經完成。

現實中,一個十分常見的 TinyML 用例就是基于攝像頭的對象檢測系統,盡管能夠捕獲高分辨率圖像,但由于存儲空間有限,只能降低圖像分辨率??墒?,如果攝像頭內置了數據分析功能,則只會捕獲所需的對象而非整個場景,而且因為相關的圖像區域更小,能保留高分辨率圖像。這種功能通常只見于更大型、性能更強大的設備,但是 TinyML 技術使得微控制器也能實現。

小巧卻不簡單

盡管 TinyML 還只是相對較新的一種范式,但已經表現出了不容小覷的推理能力(即便使用的是相對溫和的微控制器)和訓練(在性能更強大的微控制器上)成效,且精度損耗控制在最低限度。最近的示例包括:語音和面部識別、語音命令和自然語言處理,甚至同時運行多個復雜的視覺算法。

實際說來,這意味著一臺裝載 500-MHz Arm Cortex-M7 內核的微控制器,花費不超過 2 美元,內存容量從 28 Kb 到 128 KB 不等,卻能提供強大的性能,使傳感器實現真正智能。例如,恩智浦的 i.MX RT 跨界 MCU 就使用運行 TensorFlow Lite 運行時引擎的小型 ML 模型實現了此種性能。以基本對象識別為例,通常在 200 ms 內即可完成,而且精度接近 95%。

即使在這個價格和性能水平上,這些微處理器配備了多個安全功能(包括 AES-128),并支持多個外部存儲器類型、以太網、USB 和 SPI,同時還包含或支持多種類型的傳感器以及藍牙、Wi-Fi、SPDIF 和 I2C 音頻接口。價格稍高一些的設備則是通常搭載 1-GHz Arm Cortex-M7、400-MHz Cortex-M4、2 Mbytes RAM 和圖形加速。采用 3.3 VDC 電源供電時,功耗一般遠低于單板計算機。

TOPS 概述

會使用單一指標來評判性能的不僅是消費者;設計者和市場營銷部門也一直如此,因為作為一項主要規格,它可以輕松地區分設備。一個經典示例就是 CPU,多年來人們一直通過時鐘速率來評判性能;幸運的是,現在的設計者和消費者已不再如此。只用一個指標評定 CPU 性能就像是按照發動機的峰值轉速來評估汽車性能。盡管峰值轉速有一定參考意義,但幾乎無法體現發動機的強勁或汽車的駕駛性能,這些特性取決于許多其他因素。

遺憾的是,同樣的尷尬也發生在以每秒數十億次或上萬億次操作來界定的神經網絡加速器(包括高性能 MPU 或微控制器中的加速器),原因一樣,簡單的數字好記。在實踐中,單獨的 GOPS 和 TOPS 只是相對無意義的指標,代表的是實驗室而非實際操作環境中的一次測量結果(毫無疑問是最好的結果)。例如,TOPS 沒有考慮內存帶寬的限制、所需要的 CPU 開支、預處理和后處理以及其他因素。如果將所有這些和其他因素都一并考慮在內,例如在實際操作中應用于特定電路板時,系統級別的性能或許只能達到數據表上 TOPS 值的 50%或 60%。

所有這些數字都是硬件中的計算單元乘以對應的時鐘速率所得到的數值,而不是上需要運行時數據已經就緒的頻率。如果數據一直即時可用,也不存在功耗問題和內存限制,并且算法能無縫映射到硬件,則這種統計方式更有參考價值。然而,現實中并沒有這樣理想的環境。

當應用于微控制器中的 ML 加速器時,該指標更沒有價值。這些小型設備的 GOPS 值通常在 1-3 之間,但仍然能夠提供許多 ML 應用中所需要的推理功能。這些設備也依賴專為低功耗 ML 應用而設計的 Arm Cortex 處理器。除了支持整數和浮點運算以及微控制器中的許多其他功能之外,TOPS 或其他任何單一指標明顯無法充分定義性能,無論是單獨使用還是在系統中都是如此。

結論

隨著物聯網領域進一步發展,在邊緣執行盡可能多的處理,逐漸出現一種需求,即在直接位于或附著于傳感器上的微控制器上執行推理。也就是說,微處理器中應用處理器和神經網絡加速器的發展速度十分迅猛,更完善的解決方案也層出不窮。總體趨勢是將更多以人工智能為中心的功能(例如神經網絡處理)與應用處理器一起整合到微處理器中,同時避免功耗或尺寸顯著增加。

如今,可以先在功能更強大的 CPU 或 GPU 上訓練模型,然后在使用推理引擎(例如 TensorFlow Lite)的微控制器上實施,從而減小尺寸以滿足微控制器的資源要求??奢p松擴展,以適應更高的 ML 要求。相信不久之后,推理和訓練就能在這些設備上同時執行,讓微控制器的競爭力直追更大、更昂貴的計算解決方案。


審核編輯 黃昊宇

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • mcu
    mcu
    +關注

    關注

    146

    文章

    17945

    瀏覽量

    363638
  • 深度學習
    +關注

    關注

    73

    文章

    5558

    瀏覽量

    122722
  • 邊緣計算
    +關注

    關注

    22

    文章

    3313

    瀏覽量

    50812
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    邊緣計算 vs. 云計算,誰才是工業物聯網的未來?

    在物聯網的浪潮中,邊緣計算正以超低延遲、高效網絡和增強安全性,重新定義數據處理方式。無論是工業控制還是商業應用,邊緣計算都是邁向智能化未來
    的頭像 發表于 03-26 11:13 ?264次閱讀
    <b class='flag-5'>邊緣</b><b class='flag-5'>計算</b> vs. 云<b class='flag-5'>計算</b>,誰才是工業物聯網的<b class='flag-5'>未來</b>?

    什么是邊緣計算網關?深度解析邊緣計算網關的核心技術與應用場景

    景等維度,全面解析邊緣計算網關的價值與未來。 一、邊緣計算網關的定義與架構 1.1 定義與核心功能 邊緣
    的頭像 發表于 03-24 10:02 ?705次閱讀
    什么是<b class='flag-5'>邊緣</b><b class='flag-5'>計算</b>網關?<b class='flag-5'>深度</b>解析<b class='flag-5'>邊緣</b><b class='flag-5'>計算</b>網關的核心技術與應用場景

    邊緣設備設計和部署深度神經網絡的實用框架

    ???? 機器學習深度學習應用程序正越來越多地從云端轉移到靠近數據源頭的嵌入式設備。隨著邊緣計算市場的快速擴張,多種因素正在推動
    的頭像 發表于 12-20 11:28 ?856次閱讀

    邊緣學習:降本增效,開啟物流新未來

    展現出獨特優勢。 邊緣學習作為深度學習的一個子集,具有易于部署和成本效益高的特點。它不需要復雜的編程知識,只需通過簡單的配置和訓練,即可快速投入使用。其在物流中的核心優勢,主要包括:
    的頭像 發表于 12-20 09:07 ?378次閱讀

    NPU在邊緣計算中的優勢

    隨著物聯網(IoT)和5G技術的發展,邊緣計算作為一種新興的計算模式,正在逐漸成為處理和分析數據的重要手段。 NPU的定義與功能 NPU是一種專門為深度
    的頭像 發表于 11-15 09:13 ?1222次閱讀

    GPU深度學習應用案例

    GPU在深度學習中的應用廣泛且重要,以下是一些GPU深度學習應用案例: 一、圖像識別 圖像識別是深度學習
    的頭像 發表于 10-27 11:13 ?1303次閱讀

    FPGA加速深度學習模型的案例

    FPGA(現場可編程門陣列)加速深度學習模型是當前硬件加速領域的一個熱門研究方向。以下是一些FPGA加速深度學習模型的案例: 一、基于FPGA的AlexNet卷積運算加速 項目名稱
    的頭像 發表于 10-25 09:22 ?1173次閱讀

    邊緣計算對網絡延遲的影響

    的延遲。而邊緣計算則將計算能力“邊緣化”,即將數據處理和分析的任務從云端遷移到網絡的邊緣,即用戶設備或靠近用戶的
    的頭像 發表于 10-24 14:25 ?1273次閱讀

    邊緣計算未來發展趨勢

    邊緣計算未來發展趨勢呈現出多元化和高速增長的態勢,以下是對其未來發展趨勢的分析: 一、技術融合與創新 與5G、AI技術的深度融合 隨著5G
    的頭像 發表于 10-24 14:21 ?1735次閱讀

    邊緣計算與云計算的區別

    邊緣計算與云計算是兩種不同的計算模式,它們在計算資源的分布、應用場景和特點存在顯著差異。以下是
    的頭像 發表于 10-24 14:08 ?1364次閱讀

    計算邊緣計算的結合

    基于互聯網的計算方式,通過將數據和程序存儲在遠程服務器,用戶可以通過網絡隨時隨地訪問和使用。 云計算提供超大規模存儲、高度可擴展性、低成本和易于協作等優勢,適合需要集中計算和大規模數
    的頭像 發表于 10-24 09:19 ?1127次閱讀

    AI大模型與深度學習的關系

    人類的學習過程,實現對復雜數據的學習和識別。AI大模型則是指模型的參數數量巨大,需要龐大的計算資源來進行訓練和推理。深度學習算法為AI大模型
    的頭像 發表于 10-23 15:25 ?2842次閱讀

    FPGA做深度學習能走多遠?

    。FPGA的優勢就是可編程可配置,邏輯資源多,功耗低,而且賽靈思等都在極力推廣。不知道用FPGA做深度學習未來會怎樣發展,能走多遠,你怎么看。 A:FPGA 在深度
    發表于 09-27 20:53

    深度學習模型量化方法

    深度學習模型量化是一種重要的模型輕量化技術,旨在通過減少網絡參數的比特寬度來減小模型大小和加速推理過程,同時盡量保持模型性能。從而達到把模型部署到邊緣或者低算力設備,實現降本增效的目
    的頭像 發表于 07-15 11:01 ?1079次閱讀
    <b class='flag-5'>深度</b><b class='flag-5'>學習</b>模型量化方法

    深度學習中的時間序列分類方法

    的發展,基于深度學習的TSC方法逐漸展現出其強大的自動特征提取和分類能力。本文將從多個角度對深度學習在時間序列分類中的應用進行綜述,探討常用的深度
    的頭像 發表于 07-09 15:54 ?2080次閱讀
    主站蜘蛛池模板: 太原市| 平凉市| 永宁县| 十堰市| 柘荣县| 合江县| 佛教| 桦甸市| 渝中区| 福州市| 西充县| 宁河县| 界首市| 舞阳县| 罗平县| 保亭| 凌源市| 霍山县| 普陀区| 商丘市| 遂川县| 黔江区| 远安县| 永川市| 修武县| 崇阳县| 夏津县| 平原县| 东丰县| 石嘴山市| 新和县| 中卫市| 苍梧县| 临武县| 铁岭县| 突泉县| 保定市| 长阳| 汉阴县| 兴业县| 林口县|