女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

深度神經網絡是為人工智能的重要基石

姚小熊27 ? 來源: 科技行者 ? 作者: 科技行者 ? 2020-11-25 09:50 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

深度神經網絡是一種使用數學模型處理圖像以及其他數據的多層系統,而且目前已經發展為人工智能的重要基石。

深度神經網絡得出的結果看似復雜,但同樣有可能受到誤導。而這樣的誤導輕則致使其將一種動物錯誤識別為另一種動物,重則在自動駕駛汽車上將停車標志誤解為正常前進。

休斯敦大學的一位哲學家在發表于《自然機器智能》上的一篇論文中提到,關于這些假想問題背后的普遍假設,在于誤導性信息可能給這類網絡的可靠性造成嚴重影響。

隨著機器學習以及其他形式的人工智能越來越深入滲透至社會,其用途也開始涵蓋從ATM機到網絡安全系統的廣泛領域。哲學系副教授Cameron Buckner表示,正是這種普及,讓了解明顯錯誤的來源變得無比重要。研究人員們將這類信息稱為“對抗性示例”,指當深度神經網絡在學習過程中遇到訓練輸入之外的其他信息時,則很有可能總結出錯誤的結論、最終引發圖像或數據誤判。之所以被表述為“對抗性”,是因為這樣的問題往往只能由另一機器學習網絡所產生或發現。作為機器學習領域中的一種前沿技術,對抗雙方將不斷升級自身能力,以更復雜的方法嘗試實現干擾與反干擾。

Buckner提到,“但這種對抗有時候可能源自人為誤導,因此要想更好地了解神經網絡的可靠性,我們必須對誤導問題做出深入研究。”

換言之,這種誤導結果很可能源自網絡需要處理的內容、與所涉及的實際模式之間的某種相互作用所引發。這與傳統意義上的誤導,似乎還不完全是同一種概念。

Buckner寫道,“理解對抗性整合的含義,可能需要探索第三種可能性:其中至少有一部分模式屬于人為創造。因此,目前的難題在于,直接丟棄這些模式可能有損模型學習,但直接使用則具有潛在風險?!?/p>

引發機器學習系統錯誤的對抗性事件除了無心而發,更可能是有意為之。Buckner認為這才是更嚴重的風險,“意味著惡意攻擊者可能會欺騙某些本應可靠的系統,例如安全類應用程序?!?/p>

例如,基于人臉識別技術的安全系統很可能遭遇黑客入侵,導致違規行為的出現;或者在交通標志上張貼某些圖形,導致自動駕駛汽車產生意外誤解。

先前的研究發現,與人們的預期相反,使用場景中天然存在著一些對抗性示例,即機器學習系統有可能因為意外交互(而非因數據錯誤)而產生誤解。這類情況相當罕見,必須通過其他人工智能技術才可能發現。

但這些問題又真實存在,要求研究人員重新考慮該如何辨別自然異常與人為誤導。

事實上,我們對這類人為誤導的理解并不清晰。但這有點像是相機鏡頭上時不時出現的光暈,類似于依靠光暈來判斷畫面中太陽的位置,研究人員似乎也可以借助這樣的蛛絲馬跡推斷機器學習中的惡意誤導方法。

更重要的是,這種新的思考方式也將影響人們在深度神經網絡中使用工件的方式,包括不應簡單將誤解結論視為深度學習無效。

他總結道,“某些對抗性事件很可能是人為設計而來。我們必須知曉其中的手法與工件是什么,這樣才能真正理解深度神經網絡的可靠性?!?br /> 責任編輯:YYX

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4813

    瀏覽量

    103397
  • 人工智能
    +關注

    關注

    1806

    文章

    48971

    瀏覽量

    248693
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    BP神經網絡深度學習的關系

    BP神經網絡深度學習之間存在著密切的關系,以下是對它們之間關系的介紹: 一、BP神經網絡的基本概念 BP神經網絡,即反向傳播神經網絡(Ba
    的頭像 發表于 02-12 15:15 ?828次閱讀

    人工神經網絡的原理和多種神經網絡架構方法

    在上一篇文章中,我們介紹了傳統機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經網絡的原理和多種神經網絡架構方法,供各位老師選擇。 01 人工
    的頭像 發表于 01-09 10:24 ?1164次閱讀
    <b class='flag-5'>人工</b><b class='flag-5'>神經網絡</b>的原理和多種<b class='flag-5'>神經網絡</b>架構方法

    嵌入式和人工智能究竟是什么關系?

    人工智能的結合,無疑是科技發展中的一場革命。在人工智能硬件加速中,嵌入式系統以其獨特的優勢和重要性,發揮著不可或缺的作用。通過深度學習和神經網絡
    發表于 11-14 16:39

    Moku人工神經網絡101

    不熟悉神經網絡的基礎知識,或者想了解神經網絡如何優化加速實驗研究,請繼續閱讀,探索基于深度學習的現代智能化實驗的廣闊應用前景。什么是神經網絡
    的頭像 發表于 11-01 08:06 ?644次閱讀
    Moku<b class='flag-5'>人工</b><b class='flag-5'>神經網絡</b>101

    FPGA在人工智能中的應用有哪些?

    定制化的硬件設計,提高了硬件的靈活性和適應性。 綜上所述,FPGA在人工智能領域的應用前景廣闊,不僅可以用于深度學習的加速和云計算的加速,還可以針對特定應用場景進行定制化計算,為人工智能技術的發展提供有力支持。
    發表于 07-29 17:05

    FPGA在深度神經網絡中的應用

    隨著人工智能技術的飛速發展,深度神經網絡(Deep Neural Network, DNN)作為其核心算法之一,在圖像識別、語音識別、自然語言處理等領域取得了顯著成果。然而,傳統的深度
    的頭像 發表于 07-24 10:42 ?1178次閱讀

    神經網絡專用硬件實現的方法和技術

    神經網絡專用硬件實現是人工智能領域的一個重要研究方向,旨在通過設計專門的硬件來加速神經網絡的訓練和推理過程,提高計算效率和能效比。以下將詳細介紹神經
    的頭像 發表于 07-15 10:47 ?2295次閱讀

    殘差網絡深度神經網絡

    殘差網絡(Residual Network,通常簡稱為ResNet) 是深度神經網絡的一種 ,其獨特的結構設計在解決深層網絡訓練中的梯度消失和梯度爆炸問題上取得了顯著的突破,并因此成為
    的頭像 發表于 07-11 18:13 ?1594次閱讀

    簡單認識深度神經網絡

    深度神經網絡(Deep Neural Networks, DNNs)作為機器學習領域中的一種重要技術,特別是在深度學習領域,已經取得了顯著的成就。它們通過模擬人類大腦的處理方式,利用多
    的頭像 發表于 07-10 18:23 ?1998次閱讀

    BP神經網絡和卷積神經網絡的關系

    BP神經網絡(Backpropagation Neural Network)和卷積神經網絡(Convolutional Neural Network,簡稱CNN)是兩種在人工智能和機器學習領域
    的頭像 發表于 07-10 15:24 ?2433次閱讀

    BP神經網絡人工神經網絡的區別

    BP神經網絡人工神經網絡(Artificial Neural Networks,簡稱ANNs)之間的關系與區別,是神經網絡領域中一個基礎且重要
    的頭像 發表于 07-10 15:20 ?2247次閱讀

    全連接前饋神經網絡與前饋神經網絡的比較

    隨著人工智能技術的飛速發展,神經網絡作為其核心組成部分,在各個領域展現出了強大的應用潛力和價值。在眾多神經網絡類型中,全連接前饋神經網絡(Fully Connected Feedfor
    的頭像 發表于 07-09 10:31 ?2.1w次閱讀

    人工神經網絡的案例分析

    人工神經網絡(Artificial Neural Network, ANN)作為深度學習領域的重要分支,自20世紀80年代以來一直是人工智能
    的頭像 發表于 07-08 18:20 ?1533次閱讀

    前饋神經網絡的工作原理和應用

    前饋神經網絡(Feedforward Neural Network, FNN),作為最基本且應用廣泛的一種人工神經網絡模型,其工作原理和結構對于理解深度學習及
    的頭像 發表于 07-08 11:28 ?3064次閱讀

    卷積神經網絡在人臉識別中的應用

    人臉識別技術作為人工智能領域的一個重要分支,近年來取得了顯著的發展。其核心在于通過計算機對人臉圖像進行特征提取和識別,從而實現自動的人臉身份確認。隨著深度學習技術的興起,特別是卷積神經網絡
    的頭像 發表于 07-08 10:48 ?1308次閱讀
    主站蜘蛛池模板: 应用必备| 桃源县| 宁波市| 普兰店市| 水富县| 尚志市| 博乐市| 沙坪坝区| 沂南县| 吕梁市| 恩施市| 洛浦县| 肇州县| 阿拉尔市| 栖霞市| 广南县| 望都县| 平邑县| 桐城市| 东阿县| 方正县| 阿拉善左旗| 天柱县| 客服| 达日县| 育儿| 浑源县| 饶阳县| 德兴市| 邹平县| 望奎县| 海林市| 泾阳县| 黄陵县| 蓬安县| 甘孜县| 郸城县| 富阳市| 施甸县| 即墨市| 福泉市|