女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

基于神經網絡的多音區語音喚醒

智能感知與物聯網技術研究所 ? 來源:通信信號處理研究所 ? 作者:通信信號處理研究 ? 2021-01-02 11:32 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

1. 概述

人工智能技術迅猛發展,人機語音交互更加自然,搭載語音喚醒、識別技術的智能設備也越來越多。語音喚醒在學術上稱為 keyword spotting(簡稱 KWS),即在連續語流中實時檢測出說話人特定片段(比如:叮當叮當、Hi Siri 等),是一種小資源的關鍵詞檢索任務,也可以看作是一類特殊的語音識別,應用在智能設備上起到了保護用戶隱私、降低設備功耗的作用,經常扮演一個激活設備、開啟系統的入口角色,在手機助手、車載、可穿戴設備、智能家居機器人等運用得尤其普遍。

喚醒效果好壞的判定指標主要有召回率 (recall,俗稱喚醒率)、虛警率 (false alarm,俗稱誤喚醒)、響應時間和功耗四個指標。召回率表示正確被喚醒的次數占總的應該被喚醒次數的比例。虛警率表示不該被喚醒卻被喚醒的概率,工業界常以 12 或者 24 小時的誤喚醒次數作為系統虛警率的評價指標。響應時間是指用戶說出喚醒詞后,設備的反應時間,過大的響應時間會造成較差的用戶體驗。功耗是指喚醒系統的耗電情況,多數智能設備都是電池供電,且需要保證長時續航,要求喚醒系統必須是低耗能的。一個好的喚醒系統應該保證較高的召回率、較低的虛警率、響應延時短、功耗低。

喚醒技術落地的難點是要求在低功耗下達到高性能要求。一方面是目前很多智能設備為了控制成本,搭載的都是一些低端芯片,計算能力有限,需要喚醒模塊盡可能的減少計算計算量以減少能源消耗;一方面用戶使用場景多種多樣,設備也常沒有經過專業聲學設計,遠場、大噪聲、強干擾、高回聲、高混響等情況下仍然面臨召回率低、虛警率高的問題。

針對此問題,騰訊 AI Lab 近期發表一篇論文,針對復雜聲學環境,特別是噪聲和干擾人聲場景,對送給喚醒模型的聲學信號進行前處理,以提升其語音信號質量。本論文已被 Interspeech 2020 接收。

很多智能設備安裝有多個麥克風,因此多通道的前端處理技術被應用到喚醒的前端信號處理中。當目標說話人與干擾聲源分布在不同方向時,多通道的語音增強技術,例如波束形成 (beamformer), 能夠有效的增強目標說話人,抑制其它干擾聲源。但是這一做法依賴較準確的目標說話人方向定位。在實際環境中,由于有干擾聲源的存在,使得很難從帶噪數據中準確估計目標說話人的方位,特別是當有多人在同時說話時,也無法判斷哪一個是目標說話人。因此本文采用“耳聽八方” (多音區) 的思路,在空間中設定若干待增強的方向(look direction),然后區別于傳統的波束形成做法(這個做法已發表于 ICASSP 2020 [1]),本文提出了一個基于神經網絡的多音區(multi-look)語音增強模型,可同時增強多個指定的方向聲源。這些多個方向增強輸出的信號再通過注意力機制進行特征融合送予喚醒模型。由于前端的增強是通過神經網絡處理的,這樣多音區的增強模型與喚醒模型可以進行聯合優化,實現真正的前后端一體的多音區語音喚醒。

基于神經網絡的多音區語音增強模型是首個完全基于神經網絡的多音區語音增強模型。相比于特定方向的語音增強,本文提出的模型可同時增強多個方向聲源。同時這種基于神經網絡的方法,在性能上顯著優于基于傳統的波束形成做法。完全基于神經網絡的多音區前端,與喚醒模型聯合訓練,前后一體的做法進一步提升模型的魯棒性和穩定性。此模型適用于多麥克風設備的語音喚醒。

以下為方案詳細解讀。

2. 方案詳解

傳統的多音區語音處理的思路,是在空間中設定若干待增強的方向(look direction),每個方向分別應用一個波束形成,增強這個方向的聲源,最終本文將每個方向增強輸出的信號輪流送給喚醒模塊,只要有一個方向觸發喚醒,則喚醒成功。這種基于多音區的多波束喚醒技術大大提高了噪聲下的喚醒性能,然而需要多次調用喚醒模塊,因此計算量較單路喚醒也成倍增加,功耗變大制約了應用。針對這一情況,作者在早前一點的工作中 [1] 將注意力 (attention) 機制引入到喚醒框架下,如圖 1 所示,多個 look-direction 增強的信號提取特征后通過 attention 層映射成單通道輸入特征,再送入單路喚醒網絡層,與單路喚醒相比僅僅增加了一層網絡,既保證了喚醒性能,計算量又大大降低。

057c3e98-4458-11eb-8b86-12bb97331649.png

圖 1:基于多波束特征融合的喚醒模型 [1]

以上介紹的基于波束形成的多音區喚醒 [1],前端的信號處理(波束形成)和喚醒模塊還沒有做到聯合調優。因此本文提出了一個基于神經網絡的多音區語音增強模型。該模型讀取單個通道的語譜特征和多通道的相位差特征,同時根據預設的若干音區方向(look direction),作者分別提取對應的方向特征 (directionalfeature)。這些方向特征表征每個時頻點是否被特定音區方向的聲源信號占據,從而驅動網絡在輸出端增強距離每個音區方向最近的那個說話人。為了避免因為音區和說話人的空間分布導致目標說話人經過多音區增強模型處理后失真,實驗中使用一個原始麥克風信號與多個方向增強輸出的信號一起通過注意力機制進行特征融合送予喚醒模型,由于前端的增強是通過神經網絡處理的,這樣多音區的增強模型與喚醒模型可以進行聯合優化,實現真正的前后端一體的多音區語音喚醒。完整的模型結構在圖 2 中描述。

05ff7c04-4458-11eb-8b86-12bb97331649.png

圖 2: 本文提出的基于神經網絡的多音區語音增強和喚醒模型 [2]

圖 3 是一個多音區增強的實例。兩個說話人分別位于圖 (a) 所示位置,麥克風采集的兩人同時說話信號譜如圖 (b). 作者設定了 4 個待增強的方向(0 度,90 度,180 度和 270 度)。多音區增強模型將會在 0 度和 90 度方向增強藍色說話人,180 度和 270 度方向將會增強黑色說話人, 增強后的 4 個方向語譜如圖 (c)。

06514aca-4458-11eb-8b86-12bb97331649.png

圖 3: 多音區增強網絡輸出實例

在圖 4 中,作者對比了基于神經網絡的多音區增強喚醒模型與基于波束形成的多音區增強喚醒模型和基線的單通道喚醒模型。可以看出特別是在小于 6dB 的信干比聲學環境下,本文提出的做法顯著超越其它方法。不同方法喚醒率測試均在控制誤喚醒為連續 12 小時干擾噪聲下 1 次的條件下進行的。

078bea08-4458-11eb-8b86-12bb97331649.png

圖 4: 多音區喚醒模型的性能對比

3.總結及展望

本文提出的多音區語音增強和喚醒的做法,大幅降級了喚醒前端語音增強與喚醒結合使用的計算量,在未知目標聲源方位的情形下,同時增強的多個方向聲源信號的特征融合可保證目標語音得到增強,給準確的喚醒提供了保障。在論文中測試的多說話人帶噪聲的復雜聲學環境下,喚醒率達到 95%。

多音區的語音增強模型已經與聲紋模型結合,形成多音區的說話人驗證,提升聲紋系統在復雜遠場聲學環境下的魯棒性。未來這一工作可與語音識別等其它語音任務相結合。

原文標題:論文解讀丨基于神經網絡的多音區語音喚醒

文章出處:【微信公眾號:通信信號處理研究所】歡迎添加關注!文章轉載請注明出處。

責任編輯:haq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4813

    瀏覽量

    103392
  • 人工智能
    +關注

    關注

    1806

    文章

    48971

    瀏覽量

    248681

原文標題:論文解讀丨基于神經網絡的多音區語音喚醒

文章出處:【微信號:tyutcsplab,微信公眾號:智能感知與物聯網技術研究所】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    BP神經網絡與卷積神經網絡的比較

    BP神經網絡與卷積神經網絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經網絡 : BP神經網絡是一種多層的前饋神經網絡
    的頭像 發表于 02-12 15:53 ?630次閱讀

    人工神經網絡的原理和多種神經網絡架構方法

    在上一篇文章中,我們介紹了傳統機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經網絡的原理和多種神經網絡架構方法,供各位老師選擇。 01 人工神經網絡 ? 人工神經網絡模型之所
    的頭像 發表于 01-09 10:24 ?1164次閱讀
    人工<b class='flag-5'>神經網絡</b>的原理和多種<b class='flag-5'>神經網絡</b>架構方法

    卷積神經網絡與傳統神經網絡的比較

    在深度學習領域,神經網絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經網絡(CNNs)和傳統神經網絡是兩種常見的模型。 1. 結構差異 1.1 傳統神經網絡
    的頭像 發表于 11-15 14:53 ?1820次閱讀

    RNN模型與傳統神經網絡的區別

    神經網絡是機器學習領域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術的發展,神經網絡的類型也在不斷增加,其中循環神經網絡(RNN)和傳統神經網絡(如前饋
    的頭像 發表于 11-15 09:42 ?1105次閱讀

    LSTM神經網絡語音識別中的應用實例

    語音識別技術是人工智能領域的一個重要分支,它使計算機能夠理解和處理人類語言。隨著深度學習技術的發展,特別是長短期記憶(LSTM)神經網絡的引入,語音識別的準確性和效率得到了顯著提升。 LSTM
    的頭像 發表于 11-13 10:03 ?1817次閱讀

    matlab 神經網絡 數學建模數值分析

    matlab神經網絡 數學建模數值分析 精通的可以討論下
    發表于 09-18 15:14

    殘差網絡是深度神經網絡

    殘差網絡(Residual Network,通常簡稱為ResNet) 是深度神經網絡的一種 ,其獨特的結構設計在解決深層網絡訓練中的梯度消失和梯度爆炸問題上取得了顯著的突破,并因此成為圖像處理、
    的頭像 發表于 07-11 18:13 ?1594次閱讀

    神經網絡辨識模型具有什么特點

    神經網絡辨識模型是一種基于人工神經網絡的系統辨識方法,它具有以下特點: 非線性映射能力 :神經網絡能夠處理非線性問題,可以很好地擬合復雜的非線性系統。 泛化能力 :神經網絡通過學習大量
    的頭像 發表于 07-11 11:12 ?862次閱讀

    怎么對神經網絡重新訓練

    重新訓練神經網絡是一個復雜的過程,涉及到多個步驟和考慮因素。 引言 神經網絡是一種強大的機器學習模型,廣泛應用于圖像識別、自然語言處理、語音識別等領域。然而,隨著時間的推移,數據分布可能會
    的頭像 發表于 07-11 10:25 ?847次閱讀

    pytorch中有神經網絡模型嗎

    處理、語音識別等領域取得了顯著的成果。PyTorch是一個開源的深度學習框架,由Facebook的AI研究團隊開發。它以其易用性、靈活性和高效性而受到廣泛歡迎。在PyTorch中,有許多預訓練的神經網絡模型可供選擇,這些模型可以用于各種任務,如圖像分類、目標檢測
    的頭像 發表于 07-11 09:59 ?1754次閱讀

    如何在FPGA上實現神經網絡

    隨著人工智能技術的飛速發展,神經網絡作為其核心組成部分,已廣泛應用于圖像識別、語音識別、自然語言處理等多個領域。然而,傳統基于CPU或GPU的神經網絡計算方式在實時性、能效比等方面存在諸多挑戰。現場
    的頭像 發表于 07-10 17:01 ?3617次閱讀

    BP神經網絡在語言特征信號分類中的應用

    隨著人工智能技術的飛速發展,語言特征信號分類作為語音識別、語種識別及語音情感分析等領域的重要基礎,正逐漸受到研究者的廣泛關注。BP神經網絡(Back Propagation Neural
    的頭像 發表于 07-10 15:44 ?774次閱讀

    BP神經網絡和卷積神經網絡的關系

    BP神經網絡(Backpropagation Neural Network)和卷積神經網絡(Convolutional Neural Network,簡稱CNN)是兩種在人工智能和機器學習領域
    的頭像 發表于 07-10 15:24 ?2433次閱讀

    BP神經網絡和人工神經網絡的區別

    BP神經網絡和人工神經網絡(Artificial Neural Networks,簡稱ANNs)之間的關系與區別,是神經網絡領域中一個基礎且重要的話題。本文將從定義、結構、算法、應用及未來發展等多個方面,詳細闡述BP
    的頭像 發表于 07-10 15:20 ?2247次閱讀

    全連接前饋神經網絡與前饋神經網絡的比較

    隨著人工智能技術的飛速發展,神經網絡作為其核心組成部分,在各個領域展現出了強大的應用潛力和價值。在眾多神經網絡類型中,全連接前饋神經網絡(Fully Connected Feedforward
    的頭像 發表于 07-09 10:31 ?2.1w次閱讀
    主站蜘蛛池模板: 赣州市| 扬中市| 扎囊县| 炎陵县| 翁源县| 满城县| 临高县| 铜梁县| 怀来县| 乐陵市| 洛隆县| 阳原县| 如东县| 海南省| 城固县| 顺平县| 海城市| 宿松县| 驻马店市| 元谋县| 游戏| 锡林郭勒盟| 长宁区| 金乡县| 迭部县| 隆林| 通辽市| 黎川县| 沂水县| 垦利县| 绵竹市| 独山县| 霍城县| 峨边| 永和县| 时尚| 托克托县| 忻州市| 扶余县| 新巴尔虎右旗| 嘉祥县|