女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

計(jì)算機(jī)視覺中識別出的類別有什么用途

NVIDIA英偉達(dá)企業(yè)解決方案 ? 來源:NVIDIA英偉達(dá)企業(yè)解決方案 ? 作者:NVIDIA英偉達(dá) ? 2021-08-25 16:57 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

計(jì)算機(jī)視覺的應(yīng)用中,“識別”只是一個相當(dāng)入門的技術(shù),相信很多人在執(zhí)行深度學(xué)習(xí)推理應(yīng)用中,經(jīng)常產(chǎn)生的質(zhì)疑就是“識別出的類別,有什么用途呢”?

確認(rèn)每一幀圖像中有多少個我們想要識別的種類,以及他們在圖像中的位置,只是整個應(yīng)用的第一步而已,如果缺乏“目標(biāo)追蹤(tracking)”的能力,就很難提供視頻分析的基礎(chǔ)功能。

在標(biāo)準(zhǔn) OpenCV 體系里有 8 種主流的目標(biāo)追蹤算法,有興趣的可以在網(wǎng)上搜索并自行研究。

算法的基本邏輯就是需要對視頻的相鄰幀進(jìn)行“類別”與“位置”的比對,因此這部分的計(jì)算還是相當(dāng)消耗計(jì)算資源的,也就是當(dāng)視頻分析軟件“開啟”目標(biāo)追蹤功能時,其識別性能必定有所下降,大家必須先有這樣的認(rèn)知。

DeepStream 的定位就是針對“視頻分析”的應(yīng)用,因此“目標(biāo)追蹤”是其最基本的功能之一。

在前面使用的 myNano.txt 配置文件中,只需要調(diào)整一個設(shè)定值就能開啟或關(guān)閉這個追蹤功能,非常簡單。

DeepStream 支持 IOU、KLT 與 NVDCF 三種目標(biāo)追蹤算法(如下圖),其中 IOU 的性能最好,在 Jetson Nano 2GB 上的總體大約能到 200FPS;NVDCF 的精確度最高,但目前性能大約只能到 56FPS;KLT 算法目前在性能與精確度的平衡比較好,總體性也能到 160FPS,因此通常都選擇 KLT 追蹤器做演示。

算法的細(xì)節(jié)不多做解釋,請自行尋找相關(guān)技術(shù)文件學(xué)習(xí),這里就直接進(jìn)入實(shí)驗(yàn)的過程。還是以前一篇文章中的 myNano.txt 配置文件為主,如果不知道的話,就用 source8_1080p_dec_infer-resnet_tracker_tiled_display_fp16_nano.txt 復(fù)制一份出來就可以,透過修改里面的參數(shù),讓大家體驗(yàn)一下 DeepStream 目標(biāo)追蹤的功能。

01

目標(biāo)追蹤功能的開關(guān)

在 myNano.txt 最下方,可以看到[tracker]的設(shè)定組,下面有個“enable=1”的參數(shù),就是目標(biāo)追蹤的功能。

現(xiàn)在先執(zhí)行一次啟動追蹤功能,如下圖可以看到每個識別出的物件除了類別、標(biāo)框之外,旁邊還有個編號,這個編號會一直跟著該物件,這樣就形成“追蹤”的功能。

此時的識別性能如下圖,總性能(8 個數(shù)字相加)大約 160FPS。

如果將[trakcer]下面改成“enable=0”,再執(zhí)行看看結(jié)果如何?下圖中能識別出物件的類別與標(biāo)框位置,但是已經(jīng)沒有編號。

關(guān)閉追蹤功能之后的識別性能如下圖,總識別性能可以達(dá)到 250FPS 左右。

02

切換追蹤器

前面說過,目前 DeepStream 5.0 支持三種追蹤器,那么要如何選擇呢?同樣在[tracker]參數(shù)組下方,有這樣的三行參數(shù):

#ll-lib-file=/opt/nvidia/deepstream/deepstream-5.0/lib/libnvds_mot_iou.so

#ll-lib-file=/opt/nvidia/deepstream/deepstream-5.0/lib/libnvds_nvdcf.so

ll-lib-file=/opt/nvidia/deepstream/deepstream-5.0/lib/libnvds_mot_klt.so

前面加上“#”號的就是處于關(guān)閉的狀況,請先將[tracker]切回“enable=1”的開啟狀態(tài),接下來請自行加減“#”的位置以切換追蹤器的選擇,分別測試這三個追蹤器的不同之處,包括識別性能與追蹤能力。

這部分必須直接在視頻中體驗(yàn),因此就不截屏顯示。測試結(jié)果可以感受到 IOU 追蹤器的性能最好,可達(dá)到 200FPS 左右,但是同一物件的編號并不是太穩(wěn)定,而 NVDCF 追蹤器的編號最為穩(wěn)定,但性能大概只有 IOU 的 1/4,最多只能承受 2 路視頻的實(shí)時分析。

KLT 算法總體性能可達(dá)到 160FPS,可以支持到8路以內(nèi)的實(shí)時識別,追蹤能力也比 IOU 好不少,不過這個算法對 CPU 的占用率比較高,是這個算法的主要缺點(diǎn)。該如何選擇需要看實(shí)際的場景與計(jì)算設(shè)備的資源而定。

03

獲取追蹤數(shù)據(jù)

前面打開目標(biāo)追蹤功能的目的,并不只是為了在顯示器上看看而已,而是用這些數(shù)據(jù)做更有價值的應(yīng)用,而這些數(shù)據(jù)要從什么地方得到呢?通常都需要透過 PythonC++從 DeepStream 提供的接口去獲取。

這里提供一個無需了解 DeepStream 接口就能獲取目標(biāo)追蹤數(shù)據(jù)的方法,只要我們在 myNano.txt 里面的[application]參數(shù)組,添加一條“kitti-track-output-dir=《PATH》”的路徑指向就可以,這里假設(shè)要將數(shù)據(jù)存入“/home/nvidia/track”路徑下,在 myNano.txt 里添加一行參數(shù)即可:

[application]

kitti-track-output-dir=/home/nvidia/track

執(zhí)行“deepstream -c myNano.txt”之后,就可以看到/home/nvidia/track目錄下產(chǎn)生非常多的文件,如下截屏:

每個文件存放“一幀”的目標(biāo)追蹤結(jié)果,例如我們測試的 sample_1080p_h264.mp4 視頻有 48 秒,每秒有 30 幀圖像,就會生成 1440 個文件。

前面 6 位數(shù)“00_000”代表視頻源的編號,從“0”開始,如果有 4 路視頻源就會有“00_000”~“00_003”的編號,后面 6 位則是流水號,例如這個測試視頻就會生成“000000.txt”~“001440.txt”,由這兩部分組合而成文件名。

這是 KITTI 格式的數(shù)據(jù),第一欄位是該物件的類別,第二欄是該物件的“追蹤編號”,后面數(shù)據(jù)所代表的意義,請自行參考 KITTI 的格式定義。

現(xiàn)在我們就可以依序讀入這些追蹤文件,或者將這些文件回傳給控制中心,進(jìn)行文件解析與信息提取,這樣是不是很方便?相信這些內(nèi)容對于開發(fā)會很有幫助。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • NVIDIA
    +關(guān)注

    關(guān)注

    14

    文章

    5292

    瀏覽量

    106150
  • 機(jī)器視覺
    +關(guān)注

    關(guān)注

    163

    文章

    4526

    瀏覽量

    122725

原文標(biāo)題:NVIDIA Jetson Nano 2GB 系列文章(29): DeepStream 目標(biāo)追蹤功能

文章出處:【微信號:NVIDIA-Enterprise,微信公眾號:NVIDIA英偉達(dá)企業(yè)解決方案】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    計(jì)算機(jī)視覺有哪些優(yōu)缺點(diǎn)

    計(jì)算機(jī)視覺作為人工智能領(lǐng)域的一個重要分支,旨在使計(jì)算機(jī)能夠像人類一樣理解和解釋圖像和視頻的信息。這一技術(shù)的發(fā)展不僅推動了多個行業(yè)的變革,也帶來了諸多優(yōu)勢,但同時也伴隨著一些挑戰(zhàn)和局限
    的頭像 發(fā)表于 08-14 09:49 ?1994次閱讀

    計(jì)算機(jī)視覺技術(shù)的AI算法模型

    計(jì)算機(jī)視覺技術(shù)作為人工智能領(lǐng)域的一個重要分支,旨在使計(jì)算機(jī)能夠像人類一樣理解和解釋圖像及視頻的信息。為了實(shí)現(xiàn)這一目標(biāo),計(jì)算機(jī)
    的頭像 發(fā)表于 07-24 12:46 ?1746次閱讀

    機(jī)器視覺計(jì)算機(jī)視覺有什么區(qū)別

    機(jī)器視覺計(jì)算機(jī)視覺是兩個密切相關(guān)但又有所區(qū)別的概念。 一、定義 機(jī)器視覺 機(jī)器視覺,又稱為計(jì)算機(jī)
    的頭像 發(fā)表于 07-16 10:23 ?1116次閱讀

    計(jì)算機(jī)視覺的五大技術(shù)

    計(jì)算機(jī)視覺作為深度學(xué)習(xí)領(lǐng)域最熱門的研究方向之一,其技術(shù)涵蓋了多個方面,為人工智能的發(fā)展開拓了廣闊的道路。以下是對計(jì)算機(jī)視覺五大技術(shù)的詳細(xì)解析,包括圖像分類、對象檢測、目標(biāo)跟蹤、語義分割
    的頭像 發(fā)表于 07-10 18:26 ?2410次閱讀

    計(jì)算機(jī)視覺與機(jī)器視覺的區(qū)別與聯(lián)系

    隨著人工智能技術(shù)的飛速發(fā)展,計(jì)算機(jī)視覺和機(jī)器視覺作為該領(lǐng)域的兩個重要分支,逐漸引起了廣泛關(guān)注。盡管兩者在名稱上有所相似,但實(shí)際上它們在定義、技術(shù)特點(diǎn)、應(yīng)用領(lǐng)域以及發(fā)展前景等方面都存在著顯著的差異
    的頭像 發(fā)表于 07-10 18:24 ?2667次閱讀

    計(jì)算機(jī)視覺的工作原理和應(yīng)用

    計(jì)算機(jī)視覺(Computer Vision,簡稱CV)是一門跨學(xué)科的研究領(lǐng)域,它利用計(jì)算機(jī)和數(shù)學(xué)算法來模擬人類視覺系統(tǒng)對圖像和視頻進(jìn)行識別
    的頭像 發(fā)表于 07-10 18:24 ?3333次閱讀

    工控機(jī)的主要類別有哪些?

    ? ? ?工控機(jī)一般指工業(yè)控制計(jì)算機(jī),是一種采用總線結(jié)構(gòu),對生產(chǎn)過程及其機(jī)電設(shè)備、工藝裝備進(jìn)行檢測與控制的工具總稱。工控機(jī)具有重要的計(jì)算機(jī)屬性和特征,如:具有計(jì)算機(jī)CPU、硬盤、內(nèi)存、外設(shè)及接口
    的頭像 發(fā)表于 07-09 09:31 ?789次閱讀

    機(jī)器人視覺計(jì)算機(jī)視覺的區(qū)別與聯(lián)系

    機(jī)器人視覺計(jì)算機(jī)視覺是兩個密切相關(guān)但又有所區(qū)別的領(lǐng)域。 1. 引言 在當(dāng)今科技迅猛發(fā)展的時代,機(jī)器人和計(jì)算機(jī)視覺技術(shù)在各個領(lǐng)域發(fā)揮著越來越
    的頭像 發(fā)表于 07-09 09:27 ?1156次閱讀

    計(jì)算機(jī)視覺與人工智能的關(guān)系是什么

    引言 計(jì)算機(jī)視覺是一門研究如何使計(jì)算機(jī)能夠理解和解釋視覺信息的學(xué)科。它涉及到圖像處理、模式識別、機(jī)器學(xué)習(xí)等多個領(lǐng)域的知識。人工智能則是研究如
    的頭像 發(fā)表于 07-09 09:25 ?1368次閱讀

    計(jì)算機(jī)視覺與智能感知是干嘛的

    引言 計(jì)算機(jī)視覺(Computer Vision)是一門研究如何使計(jì)算機(jī)能夠理解和解釋視覺信息的學(xué)科。它涉及到圖像處理、模式識別、機(jī)器學(xué)習(xí)等
    的頭像 發(fā)表于 07-09 09:23 ?1793次閱讀

    計(jì)算機(jī)視覺和機(jī)器視覺區(qū)別在哪

    計(jì)算機(jī)視覺和機(jī)器視覺是兩個密切相關(guān)但又有明顯區(qū)別的領(lǐng)域。 一、定義 計(jì)算機(jī)視覺 計(jì)算機(jī)
    的頭像 發(fā)表于 07-09 09:22 ?851次閱讀

    計(jì)算機(jī)視覺和圖像處理的區(qū)別和聯(lián)系

    計(jì)算機(jī)視覺和圖像處理是兩個密切相關(guān)但又有明顯區(qū)別的領(lǐng)域。 1. 基本概念 1.1 計(jì)算機(jī)視覺 計(jì)算機(jī)視覺
    的頭像 發(fā)表于 07-09 09:16 ?2197次閱讀

    計(jì)算機(jī)視覺在人工智能領(lǐng)域有哪些主要應(yīng)用?

    計(jì)算機(jī)視覺是人工智能領(lǐng)域的一個重要分支,它主要研究如何讓計(jì)算機(jī)能夠像人類一樣理解和處理圖像和視頻數(shù)據(jù)。計(jì)算機(jī)視覺技術(shù)在許多領(lǐng)域都有廣泛的應(yīng)用
    的頭像 發(fā)表于 07-09 09:14 ?2843次閱讀

    計(jì)算機(jī)視覺屬于人工智能嗎

    屬于,計(jì)算機(jī)視覺是人工智能領(lǐng)域的一個重要分支。 引言 計(jì)算機(jī)視覺是一門研究如何使計(jì)算機(jī)具有視覺
    的頭像 發(fā)表于 07-09 09:11 ?2132次閱讀

    計(jì)算機(jī)視覺怎么給圖像分類

    圖像分類是計(jì)算機(jī)視覺領(lǐng)域中的一項(xiàng)核心任務(wù),其目標(biāo)是將輸入的圖像自動分配到預(yù)定義的類別集合。這一過程涉及圖像的特征提取、特征表示以及分類器的設(shè)計(jì)與訓(xùn)練。隨著深度學(xué)習(xí)技術(shù)的飛速發(fā)展,圖像
    的頭像 發(fā)表于 07-08 17:06 ?1695次閱讀
    主站蜘蛛池模板: 阳泉市| 汽车| 桐城市| 普格县| 工布江达县| 自治县| 镇远县| 松江区| 娱乐| 南投县| 邵阳县| 亚东县| 云林县| 昌江| 辽阳县| 盐边县| 江川县| 吉木萨尔县| 宁远县| 凌云县| 全州县| 观塘区| 绵竹市| 绍兴市| 宿迁市| 运城市| 高平市| 乡宁县| 中西区| 栾川县| 金寨县| 双城市| 平顺县| 云阳县| 郴州市| 宁波市| 海伦市| 滦南县| 会宁县| 苍梧县| 通州区|