女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

通過神經(jīng)網(wǎng)絡(luò)預(yù)測抗新冠病毒藥物協(xié)同作用

星星科技指導(dǎo)員 ? 來源:NVIDIA ? 作者:Michelle Horton ? 2022-04-07 17:50 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

麻省理工學(xué)院(MIT)的一項(xiàng)新研究可以為醫(yī)護(hù)人員提供有效治療新冠病毒-19患者所需的信息。最近,在美國國家科學(xué)院院刊的發(fā)布中,該研究開發(fā)了一個深度學(xué)習(xí)模型,該模型確定了對抗病毒的最佳藥物組合,盡管數(shù)據(jù)相對有限。

“通常,研究人員利用癌癥和心血管疾病等大型現(xiàn)有數(shù)據(jù)集建立深度學(xué)習(xí)模型,但這些模型無法用于數(shù)據(jù)有限的新疾病。我們的工作表明,我們可以通過整合不同種類的生物學(xué)知識來克服數(shù)據(jù)匱乏的挑戰(zhàn),”主要作者金文功說,博德研究所埃里克和溫迪·施密特中心博士后助理,麻省理工學(xué)院博士。

隨著大量美國人未接種疫苗,突破性病例不斷增加,變異威脅迫在眉睫,有效的藥物組合仍然是緩解新冠病毒 -19 的核心。抗病毒藥物、治療性單克隆抗體和皮質(zhì)類固醇等治療選擇已被證明是有效的。但關(guān)于最佳治療組合的問題還不清楚,同時也限制了可能的副作用。

了解這些藥物協(xié)同作用可以幫助患者更快地康復(fù),增加生存的可能性,并減輕醫(yī)院資源的壓力。

訓(xùn)練深度學(xué)習(xí)算法以識別治療疾病有效的藥物組合通常需要大量數(shù)據(jù)集。作為一種與癌癥、艾滋病毒或心臟病等疾病相比數(shù)據(jù)較少的新病毒,新冠病毒 -19 對模型開發(fā)提出了更大的挑戰(zhàn)。

研究人員采用一種新的雙管齊下的方法,創(chuàng)建了一種能夠處理有限數(shù)據(jù)的方法。首先,研究小組訓(xùn)練了一個神經(jīng)網(wǎng)絡(luò)來預(yù)測藥物是否會與生物靶點(diǎn)結(jié)合。這些靶點(diǎn)通過為藥物創(chuàng)造一個結(jié)合和抑制疾病生長的場所,在藥物治療中發(fā)揮著重要作用。對于新冠病毒 -19 ,這些靶點(diǎn)包括參與病毒復(fù)制的酶和蛋白質(zhì)。

基于藥物的分子結(jié)構(gòu)和疾病的生物靶點(diǎn),一個模型還可以計(jì)算單一藥物的抗病毒效果。基于此信息,協(xié)同預(yù)測模型結(jié)合計(jì)算藥物治療的效力,確定最有效的組合。

神經(jīng)網(wǎng)絡(luò)模型采用 NVIDIA GPU 和cuDNN加速深度學(xué)習(xí)框架來訓(xùn)練和處理數(shù)據(jù)。通過 88 種不同的治療方案,研究小組確定了兩種主要的對抗病毒藥物:抗病毒藥物 remdesivir 與高血壓藥物利血平聯(lián)合使用,以及 remdesivir 與 IQ-1S (一種激酶抑制劑)聯(lián)合使用

圖 1 ComboNet 接受藥物組合協(xié)同作用、單藥抗病毒活性和藥物 – 靶點(diǎn)相互作用數(shù)據(jù)方面的培訓(xùn)。資料來源: Jin 等人/ PNAS

該模型也適用于其他病原體。據(jù)金說,研究小組一直在與美國國立衛(wèi)生研究院合作,尋找治療胰腺癌的藥物組合。

關(guān)于作者

Michelle Horton 是 NVIDIA 的高級開發(fā)人員通信經(jīng)理,擁有通信經(jīng)理和科學(xué)作家的背景。她在 NVIDIA 為開發(fā)者博客撰文,重點(diǎn)介紹了開發(fā)者使用 NVIDIA 技術(shù)的多種方式。

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    無刷電機(jī)小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測方法的研究

    摘要:論文通過對無刷電機(jī)數(shù)學(xué)模型的推導(dǎo),得出轉(zhuǎn)角:與三相相電壓之間存在映射關(guān)系,因此構(gòu)建了一個以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來實(shí)現(xiàn)轉(zhuǎn)角預(yù)測,并采用改進(jìn)遺傳算法來訓(xùn)練網(wǎng)絡(luò)結(jié)
    發(fā)表于 06-25 13:06

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    多層。 每一層都由若干個神經(jīng)元構(gòu)成,神經(jīng)元之間通過權(quán)重連接。信號在神經(jīng)網(wǎng)絡(luò)中是前向傳播的,而誤差是反向傳播的。 卷積神經(jīng)網(wǎng)絡(luò)(CNN) :
    的頭像 發(fā)表于 02-12 15:53 ?630次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    自學(xué)習(xí)能力 : BP神經(jīng)網(wǎng)絡(luò)能夠通過訓(xùn)練數(shù)據(jù)自動調(diào)整網(wǎng)絡(luò)參數(shù),實(shí)現(xiàn)對輸入數(shù)據(jù)的分類、回歸等任務(wù),無需人工進(jìn)行復(fù)雜的特征工程。 泛化能力強(qiáng) : BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:36 ?883次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    神經(jīng)網(wǎng)絡(luò)(即反向傳播神經(jīng)網(wǎng)絡(luò))的核心,它建立在梯度下降法的基礎(chǔ)上,是一種適合于多層神經(jīng)元網(wǎng)絡(luò)的學(xué)習(xí)算法。該算法通過計(jì)算每層網(wǎng)絡(luò)的誤差,并將這
    的頭像 發(fā)表于 02-12 15:18 ?742次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)在時間序列預(yù)測中的應(yīng)用

    時間序列預(yù)測是數(shù)據(jù)分析中的一個重要領(lǐng)域,它涉及到基于歷史數(shù)據(jù)預(yù)測未來值。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,長短期記憶(LSTM)神經(jīng)網(wǎng)絡(luò)因其在處理序列數(shù)據(jù)方面的優(yōu)勢而受到廣泛關(guān)注。 LSTM神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-13 09:54 ?1994次閱讀

    BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型的建模步驟

    BP(Backpropagation)神經(jīng)網(wǎng)絡(luò)是一種多層前饋神經(jīng)網(wǎng)絡(luò),其核心思想是通過反向傳播算法來調(diào)整網(wǎng)絡(luò)中的權(quán)重和偏置,從而實(shí)現(xiàn)對輸入數(shù)據(jù)的預(yù)測
    的頭像 發(fā)表于 07-11 16:57 ?2685次閱讀

    神經(jīng)網(wǎng)絡(luò)辨識模型具有什么特點(diǎn)

    ,可以對未知數(shù)據(jù)進(jìn)行預(yù)測,具有很好的泛化能力。 自學(xué)習(xí)能力 :神經(jīng)網(wǎng)絡(luò)通過反向傳播算法等優(yōu)化算法,可以自動調(diào)整網(wǎng)絡(luò)參數(shù),實(shí)現(xiàn)自學(xué)習(xí)。 并行處理能力 :
    的頭像 發(fā)表于 07-11 11:12 ?862次閱讀

    神經(jīng)網(wǎng)絡(luò)三層結(jié)構(gòu)的作用是什么

    神經(jīng)網(wǎng)絡(luò)是一種受人腦啟發(fā)的計(jì)算模型,能夠模擬人腦神經(jīng)元網(wǎng)絡(luò)的工作原理。神經(jīng)網(wǎng)絡(luò)由多個層次的神經(jīng)元組成,每個神經(jīng)元可以接收輸入信號,進(jìn)行加權(quán)求
    的頭像 發(fā)表于 07-11 11:03 ?1987次閱讀

    python做bp神經(jīng)網(wǎng)絡(luò)預(yù)測數(shù)據(jù)

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)是一種多層前饋神經(jīng)網(wǎng)絡(luò)通過反向傳播算法進(jìn)行訓(xùn)練。它在許多領(lǐng)域,如模式識別、數(shù)據(jù)挖掘、預(yù)測分析等,都有廣泛的
    的頭像 發(fā)表于 07-11 10:54 ?1854次閱讀

    bp神經(jīng)網(wǎng)絡(luò)預(yù)測模型建模步驟

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)是一種多層前饋神經(jīng)網(wǎng)絡(luò),其核心思想是通過反向傳播算法來調(diào)整網(wǎng)絡(luò)中的權(quán)重和偏置,從而實(shí)現(xiàn)對輸入數(shù)據(jù)的
    的頭像 發(fā)表于 07-11 10:52 ?1131次閱讀

    BP神經(jīng)網(wǎng)絡(luò)樣本的獲取方法

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)是一種基于誤差反向傳播算法的多層前饋神經(jīng)網(wǎng)絡(luò),廣泛應(yīng)用于模式識別、分類、預(yù)測等領(lǐng)域。在構(gòu)建BP神經(jīng)網(wǎng)絡(luò)模型之
    的頭像 發(fā)表于 07-11 10:50 ?1042次閱讀

    不同類型神經(jīng)網(wǎng)絡(luò)在回歸任務(wù)中的應(yīng)用

    簡單的前饋神經(jīng)網(wǎng)絡(luò)。它由輸入層、一個或多個隱藏層和輸出層組成。每個層由多個神經(jīng)元組成,神經(jīng)元之間通過權(quán)重連接。輸入層接收輸入數(shù)據(jù),隱藏層對數(shù)據(jù)進(jìn)行非線性變換,輸出層生成
    的頭像 發(fā)表于 07-11 10:27 ?2024次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系

    廣泛應(yīng)用的神經(jīng)網(wǎng)絡(luò)模型。它們各自具有獨(dú)特的特點(diǎn)和優(yōu)勢,并在不同的應(yīng)用場景中發(fā)揮著重要作用。以下是對BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)關(guān)系的詳細(xì)探討,內(nèi)容將涵蓋兩者的定義、原理、區(qū)別、聯(lián)系以及應(yīng)
    的頭像 發(fā)表于 07-10 15:24 ?2433次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)的區(qū)別

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中一個基礎(chǔ)且重要的話題。本文將從定義、結(jié)構(gòu)、算法、應(yīng)用及未來發(fā)展等多個方面,詳細(xì)闡述BP
    的頭像 發(fā)表于 07-10 15:20 ?2247次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的案例分析

    元之間的連接和信息傳遞機(jī)制,實(shí)現(xiàn)對復(fù)雜數(shù)據(jù)的處理、模式識別及預(yù)測等功能。本文將通過幾個具體案例分析,詳細(xì)探討人工神經(jīng)網(wǎng)絡(luò)在不同領(lǐng)域的應(yīng)用,同時簡要介紹深度學(xué)習(xí)中的正則化方法,以期為讀者提供一個全面而深入的理解。
    的頭像 發(fā)表于 07-08 18:20 ?1533次閱讀
    主站蜘蛛池模板: 昭平县| 美姑县| 科技| 榆中县| 新安县| 文昌市| 东光县| 泌阳县| 萨迦县| 秦安县| 正阳县| 奉化市| 山东省| 泌阳县| 淅川县| 鹰潭市| 阳谷县| 遂昌县| 运城市| 景东| 静海县| 张家口市| 广宗县| 广南县| 广饶县| 呼伦贝尔市| 临湘市| 大连市| 英德市| 林口县| 图木舒克市| 乡城县| 天长市| 怀安县| 梓潼县| 尤溪县| 高清| 光山县| 阿图什市| 安陆市| 麦盖提县|