女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

產業(yè)觀察:芯片綠色節(jié)能也是延續(xù)摩爾定律

半導體芯科技SiSC ? 來源:半導體芯科技SiSC ? 作者:半導體芯科技SiS ? 2023-04-13 16:41 ? 次閱讀

來源:中國電子報

戈登?摩爾剛剛去世,業(yè)界關于摩爾定律未來如何演進的分析再次多了起來。當前主流觀點集中在“延續(xù)摩爾More Moore”、“超越摩爾More than Moore”與擴充摩爾(Beyond Moore) 三個分支路徑之上,即通過芯片的架構創(chuàng)新、異構集成或者新材料的引用,實現(xiàn)更高的芯片性能與更低的成本。

然而,值得注意的是,性能與成本并非集成電路技術發(fā)展的全部,功耗的降低同樣極其重要。實際上,數(shù)十年以來指導芯片工藝技術演進的,除摩爾定律之外,還有一條“登納德縮放比例定律”(Dennard Scaling),由IBM托馬斯?沃森研究中心科學家羅伯特?登納德于1974年提出。該定律指出,每平方毫米硅的功耗幾乎是恒定的,隨著晶體管密度的增加,每個晶體管的功耗會下降。根據(jù)登納德縮放比例定律,隨著芯片尺寸的縮小,所需的電壓和電流會下降,芯片產生的功耗也會降低。

不過,登納德定律從2007年就開始顯著放緩,到2012年左右已接近失效。因為隨著工藝線寬越來越接近物理極限,高制程的芯片,意味著晶體管中關鍵部件柵極的長度越來越小,越小的晶體管會使得晶體管漏電現(xiàn)象越嚴重,使得芯片在往更小工藝制作時,功耗不減反增,同時帶來嚴重的散熱問題。

摩爾定律減速疊加登納德定律失效,使得芯片制程提升給芯片性能、節(jié)能帶來的收益持續(xù)降低。芯片能耗的提高又給進入數(shù)字時代的人們巨大挑戰(zhàn)。比如人們日常工作中經常用的個人電腦處理器已經占到電腦整機耗能的30%以上。手機作為芯片使用大戶,歷來對先進工藝的需求都走在行業(yè)前沿,但隨著芯片功耗的代際收益逐漸減少,未來想通過工藝提升實現(xiàn)功耗大幅下降已經非常困難。

另一個令人警醒的案例來自于數(shù)據(jù)中心。據(jù)報道,在愛爾蘭,70座數(shù)據(jù)中心就消耗了該國14%的能源,可見處理器運算當中能源消耗量巨大。人們目前正在建設位于海底,使用海水冷卻的數(shù)據(jù)中心。隨著ChatGPT熱潮的持續(xù),未來AI運行的算力需求將更加強烈,也將產生更加巨大的能源消耗,以至有學者預測2030年AI會消耗全球生產電力的30%~50%,用于計算和冷卻。

正因如此,降低處理器運行中的能耗成為集成電路行業(yè)的主攻方向之一。多年之前,記者采訪美國加州大學伯克利分校教授、FinFET技術發(fā)明人胡正明時,其便預測:“集成電路的發(fā)展路徑并不一定非要把線寬越做越小,現(xiàn)在存儲器已經朝三維方向發(fā)展了。當然我們希望把它做得更小,可是我們也可以采取其他方法推進集成電路技術的發(fā)展,比如減少芯片的能耗。這個方向芯片還有超過1000倍的能耗可以降低。”學術界很早已經預見到了問題所在,也有越來越多的公司與機構著手研究芯片節(jié)能的問題。

可是在失去工藝微縮降耗這一利器之后,人們該如何實現(xiàn)芯片的降耗節(jié)能呢?記者采訪了多位專家,總結起來就是需要“摳細節(jié)”了——從架構、芯片設計、軟件、功能硬件、電源管理等不同層面開展工作。這是一個系統(tǒng)性的工作。

英特爾研究院副總裁、英特爾中國研究院院長宋繼強表示:“首先,我們得有一個能夠監(jiān)測處理器各項運行指標的方案。對處理器設計來講,是要增加更多可以遙測的測試點,通過系統(tǒng)工具更清楚地查看處理器的工作狀況,比如哪些運行比較飽滿,哪些是在空轉,數(shù)據(jù)阻塞多發(fā)生在什么地方。要做到對處理器的運行心中有數(shù)。”“在處理器設計的時候,可以更好的做好多核的協(xié)同,核與核之間的調度,包括多核之間做內存、緩存同步時,也有許多降低能耗的空間。因為除了計算之外,芯片很大部分能耗是發(fā)生在數(shù)據(jù)間的相互交換之上。如果CPUGPU之間能夠用一個比較好的協(xié)議通道去溝通,能夠降低許多能耗。”

除此之外,在單芯片之上的平臺間多芯片協(xié)同,系統(tǒng)層的節(jié)能設計,都有大量可資挖掘的要素。ADI中國區(qū)銷售副總裁趙傳禹就指出,通過創(chuàng)新的電源管理技術,相比傳統(tǒng)方式,可以幫客戶實現(xiàn)更好的節(jié)能方案。再比如人們正在開發(fā)類腦計算技術,通過設備仿照生物大腦的方式來傳遞及處理信息,可以實現(xiàn)超低能量的消耗。

胡正明曾經指出:“線寬的微縮總有一個極限,到了某種程度,就沒有經濟效應驅動人們把這條路徑繼續(xù)走下去。但是我們并不一定非要一條路走到黑,我們也可以轉換一個思路,同樣可能實現(xiàn)我們想要達到的目的。”摩爾定律的演進正是如此,工藝線寬并非人們的終極追求,轉換一個思路同樣也可推進集成電路技術的發(fā)展。

審核編輯黃宇

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 芯片
    +關注

    關注

    459

    文章

    52313

    瀏覽量

    438044
  • 摩爾定律
    +關注

    關注

    4

    文章

    638

    瀏覽量

    79739
收藏 人收藏

    評論

    相關推薦
    熱點推薦

    跨越摩爾定律,新思科技掩膜方案憑何改寫3nm以下芯片游戲規(guī)則

    。 然而,隨著摩爾定律逼近物理極限,傳統(tǒng)掩模設計方法面臨巨大挑戰(zhàn),以2nm制程為例,掩膜版上的每個圖形特征尺寸僅為頭發(fā)絲直徑的五萬分之一,任何微小誤差都可能導致芯片失效。對此,新思科技(Synopsys)推出制造解決方案,尤其是
    的頭像 發(fā)表于 05-16 09:36 ?4096次閱讀
    跨越<b class='flag-5'>摩爾定律</b>,新思科技掩膜方案憑何改寫3nm以下<b class='flag-5'>芯片</b>游戲規(guī)則

    電力電子中的“摩爾定律”(1)

    本文是第二屆電力電子科普征文大賽的獲獎作品,來自上海科技大學劉賾源的投稿。著名的摩爾定律中指出,集成電路每過一定時間就會性能翻倍,成本減半。那么電力電子當中是否也存在著摩爾定律呢?1965年,英特爾
    的頭像 發(fā)表于 05-10 08:32 ?175次閱讀
    電力電子中的“<b class='flag-5'>摩爾定律</b>”(1)

    玻璃基板在芯片封裝中的應用

    上升,摩爾定律延續(xù)面臨巨大挑戰(zhàn)。例如,從22納米工藝制程開始,每一代技術的設計成本增加均超過50%,3納米工藝的總設計成本更是高達15億美元。此外,晶體管成本縮放規(guī)律在28納米制程后已經停滯。
    的頭像 發(fā)表于 04-23 11:53 ?613次閱讀
    玻璃基板在<b class='flag-5'>芯片</b>封裝中的應用

    先進封裝工藝面臨的挑戰(zhàn)

    在先進制程遭遇微縮瓶頸的背景下,先進封裝朝著 3D 異質整合方向發(fā)展,成為延續(xù)摩爾定律的關鍵路徑。3D 先進封裝技術作為未來的發(fā)展趨勢,使芯片串聯(lián)數(shù)量大幅增加。
    的頭像 發(fā)表于 04-09 15:29 ?389次閱讀

    瑞沃微先進封裝:突破摩爾定律枷鎖,助力半導體新飛躍

    在半導體行業(yè)的發(fā)展歷程中,技術創(chuàng)新始終是推動行業(yè)前進的核心動力。深圳瑞沃微半導體憑借其先進封裝技術,用強大的實力和創(chuàng)新理念,立志將半導體行業(yè)邁向新的高度。 回溯半導體行業(yè)的發(fā)展軌跡,摩爾定律無疑是一個重要的里程碑
    的頭像 發(fā)表于 03-17 11:33 ?367次閱讀
    瑞沃微先進封裝:突破<b class='flag-5'>摩爾定律</b>枷鎖,助力半導體新飛躍

    混合鍵合中的銅連接:或成摩爾定律救星

    混合鍵合3D芯片技術將拯救摩爾定律。 為了繼續(xù)縮小電路尺寸,芯片制造商正在爭奪每一納米的空間。但在未來5年里,一項涉及幾百乃至幾千納米的更大尺度的技術可能同樣重要。 這項技術被稱為“混合鍵合”,可以
    的頭像 發(fā)表于 02-09 09:21 ?550次閱讀
    混合鍵合中的銅連接:或成<b class='flag-5'>摩爾定律</b>救星

    石墨烯互連技術:延續(xù)摩爾定律的新希望

    半導體行業(yè)長期秉持的摩爾定律(該定律規(guī)定芯片上的晶體管密度大約每兩年應翻一番)越來越難以維持。縮小晶體管及其間互連的能力正遭遇一些基本的物理限制。特別是,當銅互連按比例縮小時,其電阻率急劇上升,這會
    的頭像 發(fā)表于 01-09 11:34 ?521次閱讀

    摩爾定律是什么 影響了我們哪些方面

    摩爾定律是由英特爾公司創(chuàng)始人戈登·摩爾提出的,它揭示了集成電路上可容納的晶體管數(shù)量大約每18-24個月增加一倍的趨勢。該定律不僅推動了計算機硬件的快速發(fā)展,也對多個領域產生了深遠影響。
    的頭像 發(fā)表于 01-07 18:31 ?1241次閱讀

    玻璃基板面臨的四大核心技術攻關難點

    的可能性,以期在封裝層面延續(xù)摩爾定律帶來的性能提升。 ASIC封裝,這一用于承載多個芯片的構造,傳統(tǒng)上主要由有機基板構成。這些有機基板大多由樹脂(特別是玻璃增強的環(huán)氧層壓板)或塑料材料制成。根據(jù)具體的封裝技術,
    的頭像 發(fā)表于 12-22 15:27 ?1464次閱讀
    玻璃基板面臨的四大核心技術攻關難點

    Cadence如何應對AI芯片設計挑戰(zhàn)

    生成式 AI 引領智能革命成為產業(yè)升級的核心動力并點燃了“百模大戰(zhàn)”。多樣化的大模型應用激增對高性能AI 芯片的需求,促使行業(yè)在摩爾定律放緩的背景下,加速推進 2.5D、3D 及 3.5D 異構集成技術。與此同時,AI 的驅動作
    的頭像 發(fā)表于 12-14 15:27 ?1277次閱讀

    摩爾定律時代,提升集成芯片系統(tǒng)化能力的有效途徑有哪些?

    電子發(fā)燒友網(wǎng)報道(文/吳子鵬)當前,終端市場需求呈現(xiàn)多元化、智能化的發(fā)展趨勢,芯片制造則已經進入后摩爾定律時代,這就導致先進的工藝制程雖仍然是芯片性能提升的重要手段,但效果已經不如從前,先進封裝
    的頭像 發(fā)表于 12-03 00:13 ?3036次閱讀

    加速國際標準制定與推廣,RDSA產業(yè)聯(lián)盟跑步入場

    近年來,半導體產業(yè)鏈的各個環(huán)節(jié),都在為延續(xù)摩爾定律而尋求新的突破。例如從封閉的通用計算架構(x86, ARM)到開源可擴展的RISC-V, 以及利用特定領域加速(DSA)彌補通用計算的不足,芯粒
    的頭像 發(fā)表于 09-29 17:18 ?558次閱讀

    高算力AI芯片主張“超越摩爾”,Chiplet與先進封裝技術迎百家爭鳴時代

    越來越差。在這種情況下,超越摩爾逐漸成為打造高算力芯片的主流技術。 ? 超越摩爾是后摩爾定律時代三大技術路線之一,強調利用層堆疊和高速接口技術將處理、模擬/射頻、光電、能源、傳感等功能
    的頭像 發(fā)表于 09-04 01:16 ?4064次閱讀
    高算力AI<b class='flag-5'>芯片</b>主張“超越<b class='flag-5'>摩爾</b>”,Chiplet與先進封裝技術迎百家爭鳴時代

    “自我實現(xiàn)的預言”摩爾定律,如何繼續(xù)引領創(chuàng)新

    未來的自己制定了一個遠大但切實可行的目標一樣, 摩爾定律是半導體行業(yè)的自我實現(xiàn) 。雖然被譽為技術創(chuàng)新的“黃金法則”,但一些事情尚未廣為人知……. 1.?戈登·摩爾完善過摩爾定律的定義 在1965年的文章中,戈登·
    的頭像 發(fā)表于 07-05 15:02 ?488次閱讀
    主站蜘蛛池模板: 渑池县| 万宁市| 建湖县| 阳朔县| 达日县| 威宁| 江阴市| 定日县| 苍梧县| 阿巴嘎旗| 天祝| 新余市| 肥乡县| 徐闻县| 务川| 湟中县| 日照市| 广汉市| 米林县| 宁晋县| 湾仔区| 乌拉特中旗| 喜德县| 于田县| 台东市| 桂平市| 宜春市| 蕲春县| 湖北省| 西盟| 石棉县| 安多县| 友谊县| 龙游县| 美姑县| 平利县| 秦安县| 保定市| 清河县| 南充市| 石柱|