女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

神經(jīng)網(wǎng)絡(luò)初學(xué)者的激活函數(shù)指南

穎脈Imgtec ? 2023-04-21 09:28 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

作者:Mouaad B.

來(lái)源:DeepHub IMBA


如果你剛剛開始學(xué)習(xí)神經(jīng)網(wǎng)絡(luò),激活函數(shù)的原理一開始可能很難理解。但是如果你想開發(fā)強(qiáng)大的神經(jīng)網(wǎng)絡(luò),理解它們是很重要的。

f6fc88d0-dd8b-11ed-ad0d-dac502259ad0.png

但在我們深入研究激活函數(shù)之前,先快速回顧一下神經(jīng)網(wǎng)絡(luò)架構(gòu)的基本元素。如果你已經(jīng)熟悉神經(jīng)網(wǎng)絡(luò)的工作原理,可以直接跳到下一節(jié)。


神經(jīng)網(wǎng)絡(luò)架構(gòu)

神經(jīng)網(wǎng)絡(luò)由稱為神經(jīng)元的鏈接節(jié)點(diǎn)層組成,神經(jīng)元通過(guò)稱為突觸的加權(quán)連接來(lái)處理和傳輸信息。

f7128234-dd8b-11ed-ad0d-dac502259ad0.png

每個(gè)神經(jīng)元從上一層的神經(jīng)元獲取輸入,對(duì)其輸入的和應(yīng)用激活函數(shù),然后將輸出傳遞給下一層。

神經(jīng)網(wǎng)絡(luò)的神經(jīng)元包含輸入層、隱藏層和輸出層。

輸入層只接收來(lái)自域的原始數(shù)據(jù)。這里沒(méi)有計(jì)算,節(jié)點(diǎn)只是簡(jiǎn)單地將信息(也稱為特征)傳遞給下一層,即隱藏層。隱藏層是所有計(jì)算發(fā)生的地方。它從輸入層獲取特征,并在將結(jié)果傳遞給輸出層之前對(duì)它們進(jìn)行各種計(jì)算。輸出層是網(wǎng)絡(luò)的最后一層。它使用從隱藏層獲得的所有信息并產(chǎn)生最終值。

為什么需要激活函數(shù)。為什么神經(jīng)元不能直接計(jì)算并將結(jié)果轉(zhuǎn)移到下一個(gè)神經(jīng)元?激活函數(shù)的意義是什么?


激活函數(shù)在神經(jīng)網(wǎng)絡(luò)中的作用

網(wǎng)絡(luò)中的每個(gè)神經(jīng)元接收來(lái)自其他神經(jīng)元的輸入,然后它對(duì)輸入進(jìn)行一些數(shù)學(xué)運(yùn)算以生成輸出。一個(gè)神經(jīng)元的輸出可以被用作網(wǎng)絡(luò)中其他神經(jīng)元的輸入。

f746d052-dd8b-11ed-ad0d-dac502259ad0.png

如果沒(méi)有激活函數(shù),神經(jīng)元將只是對(duì)輸入進(jìn)行線性數(shù)學(xué)運(yùn)算。這意味著無(wú)論我們?cè)诰W(wǎng)絡(luò)中添加多少層神經(jīng)元,它所能學(xué)習(xí)的東西仍然是有限的,因?yàn)檩敵隹偸禽斎氲暮?jiǎn)單線性組合。

激活函數(shù)通過(guò)在網(wǎng)絡(luò)中引入非線性來(lái)解決問(wèn)題。通過(guò)添加非線性,網(wǎng)絡(luò)可以模擬輸入和輸出之間更復(fù)雜的關(guān)系,從而發(fā)現(xiàn)更多有價(jià)值的模式。

簡(jiǎn)而言之,激活函數(shù)通過(guò)引入非線性并允許神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)復(fù)雜的模式,使神經(jīng)網(wǎng)絡(luò)更加強(qiáng)大。


理解不同類型的激活函數(shù)

我們可以將這些函數(shù)分為三部分:二元、線性和非線性。

f75d787a-dd8b-11ed-ad0d-dac502259ad0.png

二元函數(shù)只能輸出兩個(gè)可能值中的一個(gè),而線性函數(shù)則返回基于線性方程的值。

非線性函數(shù),如sigmoid函數(shù),Tanh, ReLU和elu,提供的結(jié)果與輸入不成比例。每種類型的激活函數(shù)都有其獨(dú)特的特征,可以在不同的場(chǎng)景中使用。


1、Sigmoid / Logistic激活函數(shù)

Sigmoid激活函數(shù)接受任何數(shù)字作為輸入,并給出0到1之間的輸出。輸入越正,輸出越接近1。另一方面,輸入越負(fù),輸出就越接近0,如下圖所示。

f7774f48-dd8b-11ed-ad0d-dac502259ad0.png

它具有s形曲線,使其成為二元分類問(wèn)題的理想選擇。如果要?jiǎng)?chuàng)建一個(gè)模型來(lái)預(yù)測(cè)一封電子郵件是否為垃圾郵件,我們可以使用Sigmoid函數(shù)來(lái)提供一個(gè)0到1之間的概率分?jǐn)?shù)。如果得分超過(guò)0.5分,則認(rèn)為該郵件是垃圾郵件。如果它小于0.5,那么我們可以說(shuō)它不是垃圾郵件。

函數(shù)定義如下:

f7a416a4-dd8b-11ed-ad0d-dac502259ad0.png

但是Sigmoid函數(shù)有一個(gè)缺點(diǎn)——它受到梯度消失問(wèn)題的困擾。當(dāng)輸入變得越來(lái)越大或越來(lái)越小時(shí),函數(shù)的梯度變得非常小,減慢了深度神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)過(guò)程,可以看上面圖中的導(dǎo)數(shù)(Derivative)曲線。

但是Sigmoid函數(shù)仍然在某些類型的神經(jīng)網(wǎng)絡(luò)中使用,例如用于二進(jìn)制分類問(wèn)題的神經(jīng)網(wǎng)絡(luò),或者用于多類分類問(wèn)題的輸出層,因?yàn)轭A(yù)測(cè)每個(gè)類的概率Sigmoid還是最好的解決辦法。


2、Tanh函數(shù)(雙曲正切)

Tanh函數(shù),也被稱為雙曲正切函數(shù),是神經(jīng)網(wǎng)絡(luò)中使用的另一種激活函數(shù)。它接受任何實(shí)數(shù)作為輸入,并輸出一個(gè)介于-1到1之間的值。

f7bd2608-dd8b-11ed-ad0d-dac502259ad0.png

Tanh函數(shù)和Sigmoid函數(shù)很相似,但它更以0為中心。當(dāng)輸入接近于零時(shí),輸出也將接近于零。這在處理同時(shí)具有負(fù)值和正值的數(shù)據(jù)時(shí)非常有用,因?yàn)樗梢詭椭W(wǎng)絡(luò)更好地學(xué)習(xí)。

函數(shù)定義如下:

f7e4c456-dd8b-11ed-ad0d-dac502259ad0.png

與Sigmoid函數(shù)一樣,Tanh函數(shù)也會(huì)在輸入變得非常大或非常小時(shí)遭遇梯度消失的問(wèn)題。


3、線性整流單元/ ReLU函數(shù)

ReLU是一種常見(jiàn)的激活函數(shù),它既簡(jiǎn)單又強(qiáng)大。它接受任何輸入值,如果為正則返回,如果為負(fù)則返回0。換句話說(shuō),ReLU將所有負(fù)值設(shè)置為0,并保留所有正值。

f7f3a444-dd8b-11ed-ad0d-dac502259ad0.png

函數(shù)定義如下:

f812cfae-dd8b-11ed-ad0d-dac502259ad0.png

使用ReLU的好處之一是計(jì)算效率高,并且實(shí)現(xiàn)簡(jiǎn)單。它可以幫助緩解深度神經(jīng)網(wǎng)絡(luò)中可能出現(xiàn)的梯度消失問(wèn)題。

但是,ReLU可能會(huì)遇到一個(gè)被稱為“dying ReLU”問(wèn)題。當(dāng)神經(jīng)元的輸入為負(fù),導(dǎo)致神經(jīng)元的輸出為0時(shí),就會(huì)發(fā)生這種情況。如果這種情況發(fā)生得太頻繁,神經(jīng)元就會(huì)“死亡”并停止學(xué)習(xí)。


4、Leaky ReLU

Leaky ReLU函數(shù)是ReLU函數(shù)的一個(gè)擴(kuò)展,它試圖解決“dying ReLU”問(wèn)題。Leaky ReLU不是將所有的負(fù)值都設(shè)置為0,而是將它們?cè)O(shè)置為一個(gè)小的正值,比如輸入值的0.1倍。他保證即使神經(jīng)元接收到負(fù)信息,它仍然可以從中學(xué)習(xí)。

f825f3f4-dd8b-11ed-ad0d-dac502259ad0.png

函數(shù)定義如下:

f852474c-dd8b-11ed-ad0d-dac502259ad0.png

Leaky ReLU已被證明在許多不同類型的問(wèn)題中工作良好。


5、指數(shù)線性單位(elu)函數(shù)

ReLU一樣,他們的目標(biāo)是解決梯度消失的問(wèn)題。elu引入了負(fù)輸入的非零斜率,這有助于防止“dying ReLU”問(wèn)題

f86315ae-dd8b-11ed-ad0d-dac502259ad0.png

公式為:

f88ba528-dd8b-11ed-ad0d-dac502259ad0.png

這里的alpha是控制負(fù)飽和度的超參數(shù)。

與ReLU和tanh等其他激活函數(shù)相比,elu已被證明可以提高訓(xùn)練和測(cè)試的準(zhǔn)確性。它在需要高準(zhǔn)確度的深度神經(jīng)網(wǎng)絡(luò)中特別有用。


6、Softmax函數(shù)

在需要對(duì)輸入進(jìn)行多類別分類的神經(jīng)網(wǎng)絡(luò)中,softmax函數(shù)通常用作輸出層的激活函數(shù)。它以一個(gè)實(shí)數(shù)向量作為輸入,并返回一個(gè)表示每個(gè)類別可能性的概率分布。

softmax的公式是:

f8a18672-dd8b-11ed-ad0d-dac502259ad0.png

這里的x是輸入向量,i和j是從1到類別數(shù)的索引

Softmax對(duì)于多類分類問(wèn)題非常有用,因?yàn)樗_保輸出概率之和為1,從而便于解釋結(jié)果。它也是可微的,這使得它可以在訓(xùn)練過(guò)程中用于反向傳播。


7、Swish

Swish函數(shù)是一個(gè)相對(duì)較新的激活函數(shù),由于其優(yōu)于ReLU等其他激活函數(shù)的性能,在深度學(xué)習(xí)社區(qū)中受到了關(guān)注。

Swish的公式是:

f8b5fc6a-dd8b-11ed-ad0d-dac502259ad0.png

這里的beta是控制飽和度的超參數(shù)。

Swish類似于ReLU,因?yàn)樗且粋€(gè)可以有效計(jì)算的簡(jiǎn)單函數(shù)。并且有一個(gè)平滑的曲線,有助于預(yù)防“dying ReLU”問(wèn)題。Swish已被證明在各種深度學(xué)習(xí)任務(wù)上優(yōu)于ReLU。


選擇哪一種?

首先,需要將激活函數(shù)與你要解決的預(yù)測(cè)問(wèn)題類型相匹配。可以從ReLU激活函數(shù)開始,如果沒(méi)有達(dá)到預(yù)期的結(jié)果,則可以轉(zhuǎn)向其他激活函數(shù)。

以下是一些需要原則:

  • ReLU激活函數(shù)只能在隱藏層中使用。
  • Sigmoid/Logistic和Tanh函數(shù)不應(yīng)該用于隱藏層,因?yàn)樗鼈儠?huì)在訓(xùn)練過(guò)程中引起問(wèn)題。

Swish函數(shù)用于深度大于40層的神經(jīng)網(wǎng)絡(luò)會(huì)好很多。

輸出層的激活函數(shù)是由你要解決的預(yù)測(cè)問(wèn)題的類型決定的。以下是一些需要記住的基本原則:

回歸-線性激活函數(shù)

二元分類- Sigmoid

多類分類- Softmax

  • 多標(biāo)簽分類- Sigmoid

選擇正確的激活函數(shù)可以使預(yù)測(cè)準(zhǔn)確性有所不同。所以還需要根據(jù)不同的使用情況進(jìn)行測(cè)試。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    EE-269:以太網(wǎng)802.3初學(xué)者指南

    電子發(fā)燒友網(wǎng)站提供《EE-269:以太網(wǎng)802.3初學(xué)者指南.pdf》資料免費(fèi)下載
    發(fā)表于 01-05 09:48 ?1次下載
    EE-269:以太網(wǎng)802.3<b class='flag-5'>初學(xué)者</b><b class='flag-5'>指南</b>

    神經(jīng)元模型激活函數(shù)通常有哪幾類

    神經(jīng)元模型激活函數(shù)神經(jīng)網(wǎng)絡(luò)中的關(guān)鍵組成部分,它們負(fù)責(zé)在神經(jīng)元之間引入非線性,使得神經(jīng)網(wǎng)絡(luò)能夠?qū)W
    的頭像 發(fā)表于 07-11 11:33 ?1549次閱讀

    神經(jīng)網(wǎng)絡(luò)三要素包括什么

    神經(jīng)網(wǎng)絡(luò)是一種受生物神經(jīng)網(wǎng)絡(luò)啟發(fā)而發(fā)展起來(lái)的數(shù)學(xué)模型,它在人工智能、機(jī)器學(xué)習(xí)、計(jì)算機(jī)視覺(jué)等領(lǐng)域有著廣泛的應(yīng)用。神經(jīng)網(wǎng)絡(luò)的三要素包括神經(jīng)元、權(quán)重和激活
    的頭像 發(fā)表于 07-11 11:05 ?2260次閱讀

    前饋神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)和常見(jiàn)激活函數(shù)

    激活函數(shù)的非線性變換,能夠?qū)W習(xí)和模擬復(fù)雜的函數(shù)映射,從而解決各種監(jiān)督學(xué)習(xí)任務(wù)。本文將詳細(xì)闡述前饋神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu),包括其組成層、權(quán)重和偏置、激活
    的頭像 發(fā)表于 07-09 10:31 ?1830次閱讀

    matlab的神經(jīng)網(wǎng)絡(luò)app怎么用

    而成。每個(gè)神經(jīng)元接收輸入信號(hào),通過(guò)激活函數(shù)處理后輸出信號(hào)。神經(jīng)網(wǎng)絡(luò)可以通過(guò)學(xué)習(xí)訓(xùn)練數(shù)據(jù),自動(dòng)調(diào)整權(quán)重,以實(shí)現(xiàn)對(duì)輸入數(shù)據(jù)的分類、回歸、模式識(shí)別等功能。 1.1
    的頭像 發(fā)表于 07-09 09:49 ?796次閱讀

    神經(jīng)網(wǎng)絡(luò)的種類及舉例說(shuō)明

    神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)領(lǐng)域的核心組成部分,近年來(lái)在圖像識(shí)別、自然語(yǔ)言處理、語(yǔ)音識(shí)別等多個(gè)領(lǐng)域取得了顯著進(jìn)展。本文將從神經(jīng)網(wǎng)絡(luò)的基本原理出發(fā),深入講解其種類,并通過(guò)具體實(shí)例進(jìn)行說(shuō)明,以期為初學(xué)者提供一份詳盡的入門
    的頭像 發(fā)表于 07-08 11:06 ?1625次閱讀

    rnn是什么神經(jīng)網(wǎng)絡(luò)模型

    領(lǐng)域有著廣泛的應(yīng)用。 RNN的基本概念 1.1 神經(jīng)網(wǎng)絡(luò)的基本概念 神經(jīng)網(wǎng)絡(luò)是一種受生物神經(jīng)網(wǎng)絡(luò)啟發(fā)的數(shù)學(xué)模型,它由多個(gè)神經(jīng)元(或稱為節(jié)點(diǎn))組成,這些
    的頭像 發(fā)表于 07-05 09:50 ?1166次閱讀

    人工神經(jīng)網(wǎng)絡(luò)模型包含哪些層次

    、多層感知機(jī)、卷積神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)、長(zhǎng)短期記憶網(wǎng)絡(luò)等。 感知機(jī)(Perceptron) 感知機(jī)是人工神經(jīng)網(wǎng)絡(luò)的基本單元,由輸入層、輸出層和權(quán)重組成。感知機(jī)的工作原理是將輸入信號(hào)經(jīng)
    的頭像 發(fā)表于 07-05 09:17 ?1354次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別在哪

    結(jié)構(gòu)、原理、應(yīng)用場(chǎng)景等方面都存在一定的差異。以下是對(duì)這兩種神經(jīng)網(wǎng)絡(luò)的詳細(xì)比較: 基本結(jié)構(gòu) BP神經(jīng)網(wǎng)絡(luò)是一種多層前饋神經(jīng)網(wǎng)絡(luò),由輸入層、隱藏層和輸出層組成。每個(gè)神經(jīng)元之間通過(guò)權(quán)重連接,
    的頭像 發(fā)表于 07-04 09:49 ?2.1w次閱讀

    如何使用神經(jīng)網(wǎng)絡(luò)進(jìn)行建模和預(yù)測(cè)

    輸入信號(hào),對(duì)其進(jìn)行加權(quán)求和,然后通過(guò)激活函數(shù)進(jìn)行非線性轉(zhuǎn)換,生成輸出信號(hào)。通過(guò)這種方式,神經(jīng)網(wǎng)絡(luò)可以學(xué)習(xí)輸入數(shù)據(jù)的復(fù)雜模式和關(guān)系。 神經(jīng)網(wǎng)絡(luò)的類型
    的頭像 發(fā)表于 07-03 10:23 ?1304次閱讀

    BP神經(jīng)網(wǎng)絡(luò)屬于DNN嗎

    屬于。BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)是一種基于誤差反向傳播算法的多層前饋神經(jīng)網(wǎng)絡(luò),是深度學(xué)習(xí)(Deep Learning)領(lǐng)域中非常重要的一種模型。而
    的頭像 發(fā)表于 07-03 10:18 ?1248次閱讀

    bp神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

    結(jié)構(gòu)、原理、應(yīng)用場(chǎng)景等方面都存在一定的差異。以下是對(duì)這兩種神經(jīng)網(wǎng)絡(luò)的比較: 基本結(jié)構(gòu) BP神經(jīng)網(wǎng)絡(luò)是一種多層前饋神經(jīng)網(wǎng)絡(luò),由輸入層、隱藏層和輸出層組成。每個(gè)神經(jīng)元之間通過(guò)權(quán)重連接,并通
    的頭像 發(fā)表于 07-03 10:12 ?2574次閱讀

    BP神經(jīng)網(wǎng)絡(luò)激活函數(shù)怎么選擇

    中,激活函數(shù)起著至關(guān)重要的作用,它決定了神經(jīng)元的輸出方式,進(jìn)而影響整個(gè)網(wǎng)絡(luò)的性能。 一、激活函數(shù)
    的頭像 發(fā)表于 07-03 10:02 ?1317次閱讀

    BP神經(jīng)網(wǎng)絡(luò)算法的基本流程包括

    、自然語(yǔ)言處理等。本文將詳細(xì)介紹BP神經(jīng)網(wǎng)絡(luò)算法的基本流程,包括網(wǎng)絡(luò)結(jié)構(gòu)、激活函數(shù)、前向傳播、反向傳播、權(quán)重更新和訓(xùn)練過(guò)程等。 網(wǎng)絡(luò)結(jié)構(gòu) B
    的頭像 發(fā)表于 07-03 09:52 ?953次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)激活函數(shù)的作用

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNNs)是深度學(xué)習(xí)中一種重要的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),廣泛應(yīng)用于圖像識(shí)別、語(yǔ)音識(shí)別、自然語(yǔ)言處理等領(lǐng)域。在卷積神經(jīng)網(wǎng)絡(luò)中,
    的頭像 發(fā)表于 07-03 09:18 ?1884次閱讀
    主站蜘蛛池模板: 搜索| 元阳县| 灌阳县| 安新县| 宝清县| 永仁县| 广宁县| 增城市| 万州区| 河源市| 石嘴山市| 同心县| 都安| 固阳县| 塔河县| 江华| 万安县| 温泉县| 承德市| 福建省| 南陵县| 鹤岗市| 彰武县| 固阳县| 武城县| 镇远县| 库车县| 大同县| 进贤县| 手游| 雷山县| 郎溪县| 乐清市| 蛟河市| 突泉县| 高平市| 榆社县| 永清县| 阳原县| 华容县| 青州市|