女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

背面供電與DRAM、3D NAND三大技術介紹

半導體產業縱橫 ? 來源:半導體產業縱橫 ? 2023-07-26 18:21 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

最近有許多正在全球范圍內研究和開發的技術,例如晶體管GAA(Gate All around)、背面供電以及3D IC。

VLSI研討會2023”(VLSI2023)于2023年6月11日至16日在京都麗嘉皇家酒店舉行。今年VLSI2023提交的論文數量為273篇,比去年夏威夷舉辦的232篇多了41篇。這273篇論文是近10年來提交論文數量最多的。錄用論文數量達到89篇,創歷史新高。然而,錄用率只有33%。 在最近的半導體趨勢中,有許多正在全球范圍內研究和開發的技術,例如晶體管GAA(Gate All around)、背面供電以及3D IC。

那么,在論文數量和參會人數都非常多的VLSI2023上,進行了哪些演講呢?概要如下: 1)背面供電網絡(BSPDN)將在先進邏輯半導體領域取得突破,其中GAA結構引起了人們的關注。 2)在DRAM方面,從14nm節點左右開始使用EUV,但“3D DRAM”有可能在2020年代后半段出現。 3)在層數不斷增加的3D NAND中,隨著新的干法刻蝕技術的出現,層數將不斷增加。

三星電子采用GAA結構的3nm晶體管

三星電子以“世界首個采用新型多橋通道 FET (MBCFETTM) 工藝的 GAA 3nm 代工平臺技術 (SF3)”為題應用了 GAA 晶體管結構,宣布推出新的3nm代工平臺(SF3)。

7d6b50c2-2b9d-11ee-a368-dac502259ad0.png

三星稱之為“Multi-Bridge-Channel-FET (MBCFET)”的 GAA 結構晶體管,與 4nm FinFET 相比,速度提高了 22%,功耗降低了 34%,面積減少了 21%。 2022年6月30日,三星宣布已開始應用GAA的3納米邏輯半導體的初步生產。相比之下,臺積電于2022年12月29日宣布開始量產3nm,其晶體管正在延長FinFET。 僅看這個情況,由于三星在公告標題中加上了“全球首款GAA 3nm”,可以說,無論是開始量產3nm的時間,還是GAA量產的應用,三星都領先于臺積電。 然而,2023年上半年,仍有報道稱三星3納米良率低迷。因此,即使采用GAA的3nm量產比臺積電更早,也不能說對代工業務有利。 有專家表示,“臺積電從2nm開始采用GAA,三星不是要從2022年開始進行一場盛大的實驗,以在2nm競爭中取得優勢嗎?” 這樣,GAA結構的晶體管在先進邏輯半導體領域引起了人們的關注。

多層布線的困境

先進邏輯半導體具有15至16層或更多的多層布線。細信號線和粗電源線混合在多層布線中。這就出現了一個兩難的境地。

7e1c606a-2b9d-11ee-a368-dac502259ad0.png

為了有效地利用芯片面積,電源線應該很細。然而,當電源線變細時,電源線的電阻會增加,因此由 I(電流)x R(電阻)計算出的 V(電壓)會下降(稱為 IR drop)。然后,晶體管的操作受到不利影響。 另一方面,如果電源線形成得足夠厚以防止IR降,則電源線占據的面積變大,并且信號線必須做得更小或封裝緊密。 換句話說,可以說IR drop和電源線的厚度是一種權衡關系。然而,邏輯半導體需要更加小型化。因此,解決這種權衡并使其更容易進行小型化的一個想法是埋地電源軌(BPR),它在晶體管下方形成電源線,或從背面供電( BSPDN)。

筆者想知道這些BPR和BSPDN是否會在GAA之后或與GAA同時應用于先進邏輯半導體,但看起來它們很可能在GAA之前使用。 原因之一是GAA的開發和量產非常困難,但根據制造方法的不同,BPR和BSPDN可能不會那么困難。另外,如果不采用BPR或BSPDN,還存在未來小型化困難的問題。 然而,由于 BPR 和 BSPDN 有多種可能的制造方法,領先的邏輯半導體制造商目前正在尋找最合適的一種。其中Intel公布了一個名為“PowerVia”的BSPDN,所以下面我來解釋一下。

英特爾的“PowerVia”

Intel發布了一個技術節點“Intel 4”,標題為“Intel PowerVia技術:用于高密度和高性能計算的后端供電”。

7e84cb96-2b9d-11ee-a368-dac502259ad0.png

首先,圖1示出了三種供電方式。(a)是電源線嵌入晶體管下方的BPR,(b)是形成BPR后連接BPR和BSPDN的方法,(c)是直接從BSPDN供電的PowerVia。 PowerVia + BSPDN 方法的流程如圖所示。(a)首先,形成FinFET和PowerVia。(b)在FinFET和PowerVia上形成僅信號線的多層布線。(c)將該芯片翻轉并接合至載體芯片以形成FinFET和PowerVia。(d)通過從背面刮擦晶圓形成電源線以連接到 PowerVia 上圖是采用這種工藝制造的“Intel4+PowerVia”邏輯半導體的TEM圖像。底部有一個由晶體管和信號線組成的正面,以及上面有粗電源線的背面。

Power Via 的優點

圖2比較了“Intel 4”和“Intel4 + PowerVia”。兩個接觸多晶硅間距均為 50 納米,兩個鰭片間距均為 30 納米。然而,在M0 Pitch中,“Intel 4”是30nm,而“Intel4 + PowerVia”是36nm。換句話說,企業能夠在 PowerVia 的幫助下放松并形成 M0 Pitch。此外,“Intel 4”的HP庫高度為240 nm,而“Intel 4 + PowerVia”為210 nm,這意味著它可以縮小30 nm。 從圖5可以看出,“Intel 4”和“Intel4+PowerVia”在nMOS和pMOS的電氣特性上沒有區別。此外,論文指出,IR壓降改善了30%,晶體管的工作速度提高了6%。 這樣,Intel的PowerVia正如最初的預期,有利于小型化,減少IR壓降,并有助于提高晶體管性能。因此,Intel在VLSI2023上宣布將把PowerVia的應用從20A推進到Intel 4。 早期將BSPDN應用于量產的趨勢預計不僅會蔓延到Intel,還會蔓延到臺積電和三星。 那么接下來我們就來看看DRAM的變化。

三星14納米DRAM

最先進的EUV(極紫外)曝光設備(以下簡稱EUV)于2019年在“N7+”一代中由臺積電首次量產。從那時起,EUV 就理所當然地被用于先進邏輯半導體。 那么,EUV如何應用于DRAM呢?這個問題的答案是三星發布的“14nm DRAM開發和制造”。

7f426f52-2b9d-11ee-a368-dac502259ad0.png

首先,三星如圖1所示,DRAM的設計規則從N-4代到N代縮小了68%。這里是N-4代20nm、N-3代19nm(1X)、N-2代18nm(1Y)、N-1代15.6nm(1Z)、N代13.8nm(1a)(縮寫為每一代都在括號中)。 接下來,三星在圖2中顯示,N-1(1Z)使用一層EUV,N代(1a)使用五層EUV。圖 4 總結了使用 EUV 的效果。(a) 首先,EUV 消除了復雜的 DUV + 多重圖案化 (MP) 的需要。(b) 其次,通過使用 EUV,光刻工藝可以減少 25%。(c)此外,整個工藝流程的步驟數可以減少19%。(d) 最重要的是,EUV 可以比 DUV+MP 更清晰地解析線、柱和孔。

這樣一來,在先進DRAM的制造中使用EUV的好處是很大的,所以如果成本問題能夠得到解決,EUV的量產應用將擴展到DRAM以及先進邏輯。 然而,DRAM的小型化有一個大問題。如圖3所示,用于DRAM存儲操作的電容器的容量減少了55%,而電容器的長寬比(長寬比)則增加了130%。我們可以繼續形成如此高深寬比的電容器嗎?

三星的3D DRAM

NAND達到了2D小型化的極限,因此被做成了3D。DRAM也可能像NAND一樣變成3D。 三星在“Ongoing Evolution of DRAM Scaling via Third Dimension- Vertically Stacked DRAM -”中提出了3D DRAM的可能性。三星將3D DRAM稱為“垂直堆疊DRAM”,但在本文中將其稱為3D DRAM。

7fd8709c-2b9d-11ee-a368-dac502259ad0.png

如果傳統的二維小型化在N+4代達到極限,為了增加存儲密度,如圖2所示,DRAM應該像“立方塊”一樣垂直排列,堆疊的想法如圖所示。 圖4解釋了3D DRAM有如下兩種類型。(a) 一個具有垂直位線 (BL),(b) 另一個具有垂直字線 (WL)。在這兩種情況下,電容器均水平形成為條狀。 圖5示出了實際形成3D DRAM時的截面TEM圖像。(a)示出了溝道附近的結構,(b)示出了垂直WL型中的階梯狀水平BL,(c)示出了垂直BL型溝道和WL的堆疊結構。 三星表示,立式BL型和立式WL型各有優缺點,目前似乎還不知道哪一種更好。

然而,無論選擇哪種方法,如果能夠實現“Cell on Peri(CoP)”結構,其中三維存儲單元和外圍電路分別形成并通過混合Cu結連接,單元面積可以最大化。 DRAM大約兩年換代,領先優勢更新。因此,根據簡單計算,N+4代二維小型化達到極限的時間是八年后。這意味著2030年左右,3D DRAM可能會出現在世界上。 另一方面,NAND出現了新的工藝技術,比DRAM更早實現3D化。它是什么樣的?

三星236層3D NAND

三星以“第 8 代 1Tb 3D-NAND 閃存的高度均勻和可靠單元特性的新穎策略”為題發布了 236 層 3D NAND。

8095e244-2b9d-11ee-a368-dac502259ad0.png

三星將3D NAND的層數增加至第4代(64層)、第5代(92層)、第6代(128層)、第7代(176層)、第8代(236層)。此時,如圖1所示,每一代的垂直單元間距都在減小。此外,從第6代過渡到第7代時,水平單元間距減小了7%。 圖2顯示,微單元深存儲孔的高深寬比(HAR)蝕刻難度隨著深寬比的增加呈指數增加。然而有了“高級蝕刻”,可以看出難度一下子就降低了。那么這個“高級蝕刻”到底是什么? 三星在公告中沒有透露任何內容,但其方式似乎是一種將晶圓冷卻至低溫(cryo)的蝕刻。我猜溫度是-40攝氏度(也許是-60到80攝氏度)。

換句話說,三星被認為通過使用低溫蝕刻技術實現了高速、高精度的HAR蝕刻。 這種低溫蝕刻技術明顯改善了存儲孔 HAR 蝕刻后的孔輪廓(圖 3)。結果,與第七代相比,第八代的字線閾值電壓(Vth)變化改善了17%(圖4)。此外,在第7代中,諸如編程速度等信息的WL單元特性劣化為48%,但在第8代中,其劣化改善為16%(圖6)。 簡而言之,三星通過將低溫蝕刻技術應用于存儲單元的HAR蝕刻,開發出了236層第8代,其單元特性比176層第7代更好。 內存孔的 HAR 蝕刻可能會進一步發展。

東京電子(TEL)發現新的絕緣膜蝕刻

通常,在VLSI研討會上,會接受設計新器件、制作原型并闡明器件特性的論文。然而,TEL 的演示文稿“Beyond 10 μm Depth Ultra-High Speed Etch Process with 84% Lower Carbon Footprint for Memory Channel Hole of 3D NAND Flash over 400 Layers”指出,“對于 3D NAND 存儲器孔論文被接受,內容僅為“進行了 HAR 蝕刻”。這是非常不尋常的。 然而,在筆者看來,HAR刻蝕是一項偉大的成就,將載入干法刻蝕的歷史。那么,TEL的HAR刻蝕有何卓越之處呢? 40多年來,CF基氣體一直用于絕緣膜蝕刻。在這種情況下,TEL發現了一種新的氣體系統,稱為HF+ PF3。通過將該氣體系統與極低溫度(公告中為-60°C)相結合,實現了3D NAND內存孔的高速蝕刻。

HF/PF3 + 冷凍蝕刻能力

圖3顯示了使用傳統CF基等離子體和這次使用HF/PF3 + Cryo的TEL蝕刻模型(圖13)。在CF基等離子體中,CF基聚合物厚厚地沉積在孔的側壁上。雖然這種聚合物可以防止橫向蝕刻(稱為彎曲),但孔越深,到達孔底部的CF自由基就越少,孔的蝕刻速率就會急劇降低。

80cb35f2-2b9d-11ee-a368-dac502259ad0.png

作為針對這些問題的對策,提高芯片溫度等使CF基聚合物難以沉積在孔的側壁上的條件將導致孔的橫向蝕刻,從而導致彎曲。簡而言之,CF自由基向孔底的運輸和防止彎曲之間存在權衡,這使得優化變得困難。 然而,在HF/PF3 +Cryo的情況下,孔的側壁上幾乎沒有沉積。也就是說,反應物質HF被供應到孔的底部而不被側壁“吃掉”。即使孔側壁上的沉積物很小,也可以防止彎曲。因此,可以實現高速 HAR 蝕刻而無需彎曲。 從圖10可以看出,SiN的蝕刻速率隨溫度變化不大,并且無論添加或不添加PF3 ,其蝕刻速率都沒有太大變化。另一方面,對于SiO2,溫度越低,蝕刻速率越高。此外,添加 PF3可以加快蝕刻速度。在本次演示中,實驗是在-60攝氏度下進行的,但如果溫度能夠進一步降低到-80到100攝氏度,或許可以蝕刻得更快。

最終結果如圖12所示。在HF/PF3+Cryo(-60℃)條件下,在32.8分鐘內蝕刻10μm厚的SiO2和SiN層。蝕刻速率為353nm/min,孔的最大CD為114nm,最小CD為76nm。 TEL此次宣布的成果是,通過結合新型氣體系統(HF/PF3)和低溫(-60℃),實現了可用于3D NAND存儲孔的HAR蝕刻。到目前為止,HAR刻蝕領域一直被美國Lam Research壟斷,但TEL未來可能會大幅增長。




審核編輯:劉清

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • DRAM
    +關注

    關注

    40

    文章

    2343

    瀏覽量

    185382
  • 晶體管
    +關注

    關注

    77

    文章

    10005

    瀏覽量

    141203
  • NAND閃存
    +關注

    關注

    2

    文章

    227

    瀏覽量

    23313
  • NAND芯片
    +關注

    關注

    0

    文章

    24

    瀏覽量

    10238
  • GAA
    GAA
    +關注

    關注

    2

    文章

    38

    瀏覽量

    7715

原文標題:背面供電與DRAM、3D NAND三大技術的未來預測

文章出處:【微信號:ICViews,微信公眾號:半導體產業縱橫】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    3D閃存的制造工藝與挑戰

    3D閃存有著更大容量、更低成本和更高性能的優勢,本文介紹3D閃存的制造工藝與挑戰。
    的頭像 發表于 04-08 14:38 ?909次閱讀
    <b class='flag-5'>3D</b>閃存的制造工藝與挑戰

    3D打印中XPR技術對于打印效果的影響?

    我是3D打印設備的制造商,我想具體了解下3D打印中XPR技術對于打印效果的影響? 或者是否能提供對應的專利信息以備查閱
    發表于 02-18 07:59

    2.5D3D封裝技術介紹

    整合更多功能和提高性能是推動先進封裝技術的驅動,如2.5D3D封裝。 2.5D/3D封裝允許IC垂直集成。傳統的flip-chip要求每個
    的頭像 發表于 01-14 10:41 ?1454次閱讀
    2.5<b class='flag-5'>D</b>和<b class='flag-5'>3D</b>封裝<b class='flag-5'>技術</b><b class='flag-5'>介紹</b>

    光學系統的3D可視化

    Results Profile提供有關傳播光線的信 息,而后者只顯示組件和探測器。 在接下來的使用案例中,我們將重點介紹 System:3D視圖。 系統:Ray Results Profile的3D
    發表于 01-06 08:53

    3D打印技術,推動手板打樣從概念到成品的高效轉化

    代表性的新科技之一。這種新興技術能夠大大縮短從概念到成品的時間周期,還能顯著提高手板打樣的機動性和生產成本,使得產品開發過程變得愈發高效便捷。 近數年,3D打印技術在全球的應用范圍不斷擴大。據統計
    發表于 12-26 14:43

    uvled光固化3d打印技術

    說到UVLED光固化3D打印技術,那可是當下3D打印領域的一股清流啊!這項技術利用紫外線和光固化樹脂來制造3D打印模型,原理簡單又高效。UV
    的頭像 發表于 12-24 13:13 ?687次閱讀
    uvled光固化<b class='flag-5'>3d</b>打印<b class='flag-5'>技術</b>

    【半導體存儲】關于NAND Flash的一些小知識

    技術方案。   NAND Flash分類   NAND閃存卡的主要分類以NAND閃存顆粒的技術
    發表于 12-17 17:34

    UV光固化技術3D打印中的應用

    UV光固化3D打印技術憑借高精度、快速打印環保優勢,在工業設計等領域廣泛應用。SLA、DLP及CLIP技術各具特色,推動3D打印向高速、高精度發展。
    的頭像 發表于 11-15 09:35 ?1408次閱讀
    UV光固化<b class='flag-5'>技術</b>在<b class='flag-5'>3D</b>打印中的應用

    3D-NAND浮柵晶體管的結構解析

    傳統平面NAND閃存技術的擴展性已達到極限。為了解決這一問題,3D-NAND閃存技術應運而生,通過在垂直方向上堆疊存儲單元,大幅提升了存儲密度。本文將簡要
    的頭像 發表于 11-06 18:09 ?2285次閱讀
    <b class='flag-5'>3D-NAND</b>浮柵晶體管的結構解析

    3D掃描技術醫療領域創新實踐,積木易搭3D掃描儀Mole助力定制個性化手臂康復輔具

    模式,醫療行業的服務質量、效率和體驗迎來了全新的升級。 其中,3D掃描+3D打印技術在醫療領域的矯形修復、醫療輔助器具定制、口腔等眾多醫療領域應用越來越廣泛。有著高精度、非接觸、高效率等特征的
    的頭像 發表于 10-31 11:25 ?667次閱讀
    <b class='flag-5'>3D</b>掃描<b class='flag-5'>技術</b>醫療領域創新實踐,積木易搭<b class='flag-5'>3D</b>掃描儀Mole助力定制個性化手臂康復輔具

    物聯網行業中的模具定制方案_3D打印技術分享

    3D打印技術的基本原理是斷層掃描的逆過程。斷層掃描是把某個東西“切”成無數疊加的片,3D 打印則是通過連續的物理層疊加,逐層增加材料來生成維實體
    的頭像 發表于 10-09 09:54 ?510次閱讀
    物聯網行業中的模具定制方案_<b class='flag-5'>3D</b>打印<b class='flag-5'>技術</b>分享

    3D DRAM內嵌AI芯片,AI計算性能暴增

    電子發燒友網報道(文/黃晶晶)盡管當前AI訓練主要采用GPU+HBM的方案,不過一些新的技術仍然希望進一步打破存儲數據傳輸帶來的瓶頸問題。最近,NEO半導體宣布開發其3D X-AI芯片技術,旨在取代
    的頭像 發表于 08-16 00:08 ?3778次閱讀
    <b class='flag-5'>3D</b> <b class='flag-5'>DRAM</b>內嵌AI芯片,AI計算性能暴增

    泛林集團推出第代低溫電介質蝕刻技術Lam Cryo 3.0,助力3D NAND邁向千層新紀元

    里程碑式的技術突破,不僅鞏固了泛林集團在3D NAND閃存蝕刻領域的霸主地位,更為全球存儲技術的未來發展鋪設了堅實的基石。
    的頭像 發表于 08-05 09:31 ?1364次閱讀

    泛林集團推出第代低溫介質蝕刻技術Lam Cyro 3.0

    半導體設備領軍企業泛林集團(Lam Research)近日震撼發布其專為3D NAND Flash存儲器制造設計的第代低溫介質蝕刻技術——Lam Cryo 3.0。據泛林集團全球產品
    的頭像 發表于 08-02 15:53 ?1242次閱讀

    裸眼3D筆記本電腦——先進的光場裸眼3D技術

    隨著科技的不斷進步,裸眼3D技術已經不再是科幻電影中的幻想。如今,英倫科技裸眼3D筆記本電腦將這一前沿科技帶到了我們的日常生活中。無論你是專業的3D模型設計師,還是希望在視頻播放和模型
    的頭像 發表于 07-16 10:04 ?994次閱讀
    主站蜘蛛池模板: 万安县| 视频| 广水市| 南通市| 紫云| 安福县| 莫力| 华安县| 昭平县| 宜阳县| 白朗县| 顺义区| 嫩江县| 东乡县| 德保县| 神木县| 怀来县| 苏尼特右旗| 栖霞市| 武鸣县| 永胜县| 富平县| 千阳县| 班戈县| 育儿| 巧家县| 罗平县| 咸阳市| 浑源县| 呼伦贝尔市| 获嘉县| 昆山市| 哈巴河县| 连云港市| 高安市| 尚义县| 旬邑县| 荥阳市| 固始县| 洪泽县| 都匀市|