女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

機器視覺中的卷積神經(jīng)網(wǎng)絡結構分析

ThunderSoft中科創(chuàng)達 ? 2017-12-01 11:26 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

視覺不論對生物界還是人類,都起到了至關重要的作用。隨著人工智能浪潮的大勢來襲,包括機器視覺計算機視覺等在內(nèi)的智能視覺也在人工智能領域逐步扮演著越來越重要的角色。

智能視覺涉及心理物理學、計算機科學、圖像處理、模式識別、神經(jīng)生物學等諸多領域,主要指利用計算機來模擬人或再現(xiàn)與人類有關的某些智能行為的技術,客觀的來說,這是從事物的圖像中提取信息進行處理并加以理解,從而最終用于實際的生產(chǎn)生活中去的過程。

由此可見,圖像分析是智能視覺中最為重要的一環(huán)。圖像分析與圖像處理關系密切,兩者有一定程度的交叉,但是又有所不同。

圖像分析更側重點在于研究圖像的內(nèi)容,包括但不局限于使用圖像處理的各種技術,它更傾向于對圖像內(nèi)容的分析、解釋、和識別;而圖像處理側重于信號處理方面的研究,如圖像對比度的調節(jié)、圖像編碼、去噪以及濾波的研究。

圖像分析和計算機科學領域中的模式識別、計算機視覺關系更密切一些。概括地說,圖像分析一般利用數(shù)學模型并結合圖像處理的技術來分析底層特征和上層結構,從而提取具有一定智能性的信息。

圖像分析要求我們?nèi)祟惤虝嬎銠C識別物品,我們把一類物品的大量圖片丟給計算機,讓計算機去識別它,然后我們根據(jù)不同物品的不同特點建立簡單的幾何模型,比如一些矩形、三角形、圓形等的組合,從而讓計算機更好地識別出不同物品。

然而,實際操作的結果與上述的原理出現(xiàn)了很大的偏差,因為在現(xiàn)實世界中同種物品也大多有著不同的形態(tài)。比如一個杯子,它的形狀可以是圓柱狀的、立方體的、不規(guī)則形狀的等等,如果按照上述的原理進行圖像分析的話,那我們需要為所有杯子設計出對應的模型來教給計算機如何去識別“杯子”這一生活中簡單的物品,顯然這是不可能完成的任務。

所以后來,科學家們從孩子們學習的過程中獲得了靈感。孩子的父母在教育孩子認識“杯子”的時候并沒有告訴孩子如何去構建一個杯子的幾何模型,孩子們學會認識“杯子”是什么物品是依靠經(jīng)驗來學習的。于是,科學家們用機器學習的方式來處理這個問題,而其中很重要的技術在于“卷積神經(jīng)網(wǎng)絡”。

“卷積神經(jīng)網(wǎng)絡”是一個多層的神經(jīng)網(wǎng)絡,與其他深度學習網(wǎng)絡最大的區(qū)別是擁有可以與二維數(shù)據(jù)直接卷積操作的卷積層。卷積神經(jīng)網(wǎng)絡的優(yōu)點是能夠直接與圖像像素進行卷積,從圖像像素中提取圖像特征,這種處理方式更加接近人類大腦視覺系統(tǒng)的處理方式 。

卷積神經(jīng)網(wǎng)絡的基本網(wǎng)絡結構可以分為四個部分:輸入層、卷積層、全連接層和輸出層。在利用卷積神經(jīng)網(wǎng)絡進行圖像分析的過程中,首先將圖片分解為部分重復的小區(qū)域,卷積神經(jīng)網(wǎng)絡中的小神經(jīng)元集合與輸入圖像的一個小區(qū)域相連,也就是相當于把每一個小區(qū)域都輸入到神經(jīng)網(wǎng)絡中來識別。

這樣做的好處是集合有重疊的平鋪開來,網(wǎng)絡中的每一層都重復同樣的過程,所以網(wǎng)絡能夠容忍輸入圖像的一定程度上的變形。然后對輸入的圖像鄰域進行卷積處理得到圖像的鄰域特征圖,再通過池化技術將小鄰域內(nèi)進行下采樣過程從而得到新的特征。

如此一來,我們就將一個圖片縮減成了較小的序列,最后我們再將這個數(shù)列輸入到另外的一個“完全連接”神經(jīng)網(wǎng)絡中,這個網(wǎng)絡決定圖片是否匹配。所以整個過程經(jīng)過卷積化、最大池化、“完全連接”神經(jīng)網(wǎng)絡,結合實際問題我們可以決定卷積、最大池化的次數(shù),卷積層增多有助于識別更加復雜的特征,調用最大池化函數(shù)有助于縮小數(shù)據(jù)大小。近年來卷積神經(jīng)網(wǎng)絡在圖像分析領域得到了廣闊的應用。

隨著科技的高速發(fā)展,視覺智能領域的圖像分析過程也越來越充滿挑戰(zhàn)性,卷積神經(jīng)網(wǎng)絡的出現(xiàn)解決了傳統(tǒng)處理方式中出現(xiàn)的問題。

伴隨著人工神經(jīng)網(wǎng)絡的不斷發(fā)展,人工智能的視覺智能在未來將更加高效、準確,不斷進步的圖像分析過程也將為人工智能的發(fā)展帶來巨大優(yōu)勢,因此,我們絕對有理由相信,未來的人工智能將不斷為人類帶來驚喜。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 機器視覺
    +關注

    關注

    163

    文章

    4526

    瀏覽量

    122759
  • 人工智能
    +關注

    關注

    1806

    文章

    48960

    瀏覽量

    248591

原文標題:AI|讓我們來聊一聊智能視覺中的圖像分析過程

文章出處:【微信號:THundersoft,微信公眾號:ThunderSoft中科創(chuàng)達】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    BP神經(jīng)網(wǎng)絡網(wǎng)絡結構設計原則

    BP(back propagation)神經(jīng)網(wǎng)絡是一種按照誤差逆向傳播算法訓練的多層前饋神經(jīng)網(wǎng)絡,其網(wǎng)絡結構設計原則主要基于以下幾個方面: 一、層次結構 輸入層 :接收外部輸入信號,不
    的頭像 發(fā)表于 02-12 16:41 ?716次閱讀

    BP神經(jīng)網(wǎng)絡卷積神經(jīng)網(wǎng)絡的比較

    BP神經(jīng)網(wǎng)絡卷積神經(jīng)網(wǎng)絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經(jīng)網(wǎng)絡 : BP
    的頭像 發(fā)表于 02-12 15:53 ?624次閱讀

    卷積神經(jīng)網(wǎng)絡的實現(xiàn)工具與框架

    : TensorFlow是由Google Brain團隊開發(fā)的開源機器學習框架,它支持多種深度學習模型的構建和訓練,包括卷積神經(jīng)網(wǎng)絡。TensorFlow以其靈活性和可擴展性而聞名,適用于研究和生產(chǎn)環(huán)境。 特點: 靈活性: Te
    的頭像 發(fā)表于 11-15 15:20 ?650次閱讀

    卷積神經(jīng)網(wǎng)絡與傳統(tǒng)神經(jīng)網(wǎng)絡的比較

    在深度學習領域,神經(jīng)網(wǎng)絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡是兩種常見的模型。 1.
    的頭像 發(fā)表于 11-15 14:53 ?1813次閱讀

    深度學習卷積神經(jīng)網(wǎng)絡模型

    卷積神經(jīng)網(wǎng)絡是一種前饋神經(jīng)網(wǎng)絡,其靈感來源于生物的視覺皮層機制。它通過模擬人類視覺系統(tǒng)的處理方式,能夠自動提取圖像特征,從而在圖像識別和分
    的頭像 發(fā)表于 11-15 14:52 ?820次閱讀

    卷積神經(jīng)網(wǎng)絡的基本原理與算法

    卷積神經(jīng)網(wǎng)絡(Convolutional Neural Networks,CNN)是一類包含卷積計算且具有深度結構的前饋神經(jīng)網(wǎng)絡(Feedf
    的頭像 發(fā)表于 11-15 14:47 ?1751次閱讀

    關于卷積神經(jīng)網(wǎng)絡,這些概念你厘清了么~

    取特征的強大工具,例如識別音頻信號或圖像信號的復雜模式就是其應用之一。 1、什么是卷積神經(jīng)網(wǎng)絡神經(jīng)網(wǎng)絡是一種由神經(jīng)元組成的系統(tǒng)或
    發(fā)表于 10-24 13:56

    卷積神經(jīng)網(wǎng)絡的應用場景及優(yōu)缺點

    卷積神經(jīng)網(wǎng)絡(Convolutional Neural Networks,簡稱CNNs)是一種深度學習架構,它在圖像識別、視頻分析、自然語言處理等領域有著廣泛的應用。 一、卷積
    的頭像 發(fā)表于 07-11 14:45 ?1807次閱讀

    卷積神經(jīng)網(wǎng)絡有何用途 卷積神經(jīng)網(wǎng)絡通常運用在哪里

    和應用場景。 圖像識別 圖像識別是卷積神經(jīng)網(wǎng)絡最廣泛的應用之一。CNN能夠自動學習圖像的特征,實現(xiàn)對圖像的分類、識別和分析。以下是一些具體的應用場景: 1.1 物體識別:CNN可以識
    的頭像 發(fā)表于 07-11 14:43 ?4334次閱讀

    卷積神經(jīng)網(wǎng)絡的基本概念、原理及特點

    卷積神經(jīng)網(wǎng)絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習算法,它在圖像識別、視頻分析、自然語言處理等領域有著廣泛的應用。本文將詳細介紹卷積
    的頭像 發(fā)表于 07-11 14:38 ?2410次閱讀

    神經(jīng)網(wǎng)絡卷積層、池化層與全連接層

    在深度學習卷積神經(jīng)網(wǎng)絡(Convolutional Neural Network, CNN)是一種特別適用于處理圖像數(shù)據(jù)的神經(jīng)網(wǎng)絡結構。它通過
    的頭像 發(fā)表于 07-11 14:18 ?9949次閱讀

    卷積神經(jīng)網(wǎng)絡的工作原理和應用

    卷積神經(jīng)網(wǎng)絡(FCN)是深度學習領域中的一種特殊類型的神經(jīng)網(wǎng)絡結構,尤其在計算機視覺領域表現(xiàn)出色。它通過全局平均池化或轉置卷積處理任意尺寸
    的頭像 發(fā)表于 07-11 11:50 ?1829次閱讀

    卷積神經(jīng)網(wǎng)絡的壓縮方法

    卷積神經(jīng)網(wǎng)絡(Convolutional Neural Network, CNN)作為深度學習領域的重要分支,在圖像識別、視頻處理、自然語言處理等多個領域取得了顯著成就。然而,隨著網(wǎng)絡結構的日益復雜
    的頭像 發(fā)表于 07-11 11:46 ?750次閱讀

    BP神經(jīng)網(wǎng)絡卷積神經(jīng)網(wǎng)絡的關系

    BP神經(jīng)網(wǎng)絡(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(Convolutional Neural Network,簡稱CNN)是兩種在人工智能和機器
    的頭像 發(fā)表于 07-10 15:24 ?2429次閱讀

    卷積神經(jīng)網(wǎng)絡在視頻處理的應用

    卷積神經(jīng)網(wǎng)絡(Convolutional Neural Networks,CNN)作為深度學習的代表算法之一,在計算機視覺領域取得了顯著成就,特別是在視頻處理方面。本文將深入探討卷積
    的頭像 發(fā)表于 07-09 15:53 ?1203次閱讀
    主站蜘蛛池模板: 两当县| 大同县| 岗巴县| 淮北市| 镶黄旗| 长阳| 大石桥市| 微博| 平凉市| 阿拉善左旗| 沂水县| 家居| 汉川市| 灵山县| 丹凤县| 吕梁市| 曲阜市| 贺州市| 留坝县| 平山县| 黄浦区| 舒城县| 苏州市| 玉环县| 将乐县| 平遥县| 辽阳市| 尉犁县| 乃东县| 大方县| 府谷县| 洛扎县| 井冈山市| 南城县| 鄂伦春自治旗| 吴桥县| 台东县| 南部县| 灵川县| 桐乡市| 巩留县|