女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深度學習是如何從概念發(fā)展為現(xiàn)實的?

EdXK_AI_News ? 來源:未知 ? 作者:胡薇 ? 2018-05-31 10:06 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在二十世紀五十年代就存在深度學習的概念了。麥肯錫全球研究院發(fā)文簡要回顧了深度學習是如何從概念發(fā)展為現(xiàn)實的,而使之實現(xiàn)的關(guān)鍵人物又是誰。

文章表示,要書寫深度學習的完整歷史還為時過早,有些細節(jié)尚存在爭議,但是我們已經(jīng)能追尋其公認的起源概貌,雖然還不完整,也能確定一些先驅(qū)者了。沃倫·麥卡洛克(WarrenMcCulloch)和沃爾特·皮茨(Walter Pitts)就名列其中。他們早在1943年就提出了人工神經(jīng)元,這是大腦中“神經(jīng)網(wǎng)絡(luò)”的計算模型。還有美國斯坦福大學(Stanford University)的伯納德·威德羅(BernardWidrow)和泰德·霍夫(Ted Hoff),他們在二十世紀五十年代末期開發(fā)了一種神經(jīng)網(wǎng)絡(luò)應用,降低電話線中的噪音。

同一時期,美國心理學家弗蘭克·羅森布拉特(Frank Rosenblatt)引入了“感知器”這種設(shè)備的概念,模擬大腦的神經(jīng)結(jié)構(gòu),并展現(xiàn)出學習的能力。后來,美國麻省理工學院(MIT)的馬文·明斯基(Marvin Minsky)和西摩·帕普特(SeymourPapert)在其1969年出版的書《感知器》中,用數(shù)學的方法展示了感知器只能進行很基礎(chǔ)的任務,所以這項研究暫停。他們的書還討論了訓練多層神經(jīng)網(wǎng)絡(luò)的難點。

1986年,加拿大多倫多大學(University of Toronto)的杰弗里·辛頓(Geoffrey Hinton)與同事大衛(wèi)·魯姆哈特(DavidRumelhart)和羅納德·威廉姆斯(Ronald Williams)發(fā)表了目前很著名的反向傳播訓練算法,解決了這一訓練難題,但有些業(yè)內(nèi)人士指出芬蘭數(shù)學家賽普·林納因馬(SeppoLinnainmaa)早在二十世紀六十年代就已經(jīng)發(fā)明了反向傳播。美國紐約大學(New York University)的楊立昆(Yann LeCun)率先將神經(jīng)網(wǎng)絡(luò)應用于圖像識別任務,他在1998年發(fā)表的文章中定義了卷積神經(jīng)網(wǎng)絡(luò),這種神經(jīng)網(wǎng)絡(luò)模擬人類的視覺皮層。同期,約翰·霍普菲爾德(JohnHopfield)推廣了“霍普菲爾德”網(wǎng)絡(luò),這是首個循環(huán)神經(jīng)網(wǎng)絡(luò)。1997年,爾根·施米德休伯(JürgenSchmidhuber)和賽普·霍克賴特(Sepp Hochreiter)進一步擴展了該網(wǎng)絡(luò),他們引入了長短期記憶模型(long-short termmemory, LSTM),極大地提高了循環(huán)神經(jīng)網(wǎng)絡(luò)的效率和實用性。2012年,辛頓和他的學生在著名的 ImageNet 競賽中取得了突出的結(jié)果,彰顯了深度學習的強大。該競賽以李飛飛等人整理的數(shù)據(jù)集為基礎(chǔ)。與此同時,杰弗里·迪恩(JeffDean)和吳恩達(Andrew Ng)正在谷歌大腦(Google Brain)進行大規(guī)模圖像識別方面的突破性工作。

深度學習也增強了強化學習這一已存在的領(lǐng)域,理查德·薩頓(Richard Sutton)就是其中一位頂尖的研究人員,他牽頭讓谷歌DeepMind開發(fā)的系統(tǒng)取得了多次棋類比賽的勝利。2014年,伊恩·古德費洛(IanGoodfellow)發(fā)表了一篇關(guān)于生成式對抗網(wǎng)絡(luò)的文章,這種網(wǎng)絡(luò)與強化學習已成為了該領(lǐng)域近期多個研究的焦點。

人工智能(AI)能力的持續(xù)進步讓斯坦福大學啟動了“人工智能百年研究”(One Hundred Year Study on Artificial Intelligence)項目。該項目由微軟研究院院長埃里克·霍維茨(EricHorvitz)發(fā)起,是基于他和微軟研究院的同事所進行的長期研究。過去幾年里,眾多研究先驅(qū)的研究結(jié)果和指導讓我們受益良多。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 深度學習
    +關(guān)注

    關(guān)注

    73

    文章

    5558

    瀏覽量

    122722

原文標題:深度學習的起源與先行者

文章出處:【微信號:AI_News,微信公眾號:人工智能快報】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    SLAMTEC Aurora:把深度學習“卷”進機器人日常

    在人工智能和機器人技術(shù)飛速發(fā)展的今天,深度學習與SLAM(同步定位與地圖構(gòu)建)技術(shù)的結(jié)合,正引領(lǐng)著智能機器人行業(yè)邁向新的高度。最近科技圈頂流DeepSeek簡直殺瘋了!靠著逆天的深度
    的頭像 發(fā)表于 02-19 15:49 ?437次閱讀

    軍事應用中深度學習的挑戰(zhàn)與機遇

    人工智能尤其是深度學習技術(shù)的最新進展,加速了不同應用領(lǐng)域的創(chuàng)新與發(fā)展深度學習技術(shù)的發(fā)展深刻影響
    的頭像 發(fā)表于 02-14 11:15 ?513次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學習的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學習之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network
    的頭像 發(fā)表于 02-12 15:15 ?825次閱讀

    NPU在深度學習中的應用

    隨著人工智能技術(shù)的飛速發(fā)展深度學習作為其核心驅(qū)動力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專門
    的頭像 發(fā)表于 11-14 15:17 ?1864次閱讀

    Pytorch深度學習訓練的方法

    掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學習訓練。
    的頭像 發(fā)表于 10-28 14:05 ?632次閱讀
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>學習</b>訓練的方法

    GPU深度學習應用案例

    GPU在深度學習中的應用廣泛且重要,以下是一些GPU深度學習應用案例: 一、圖像識別 圖像識別是深度學習
    的頭像 發(fā)表于 10-27 11:13 ?1303次閱讀

    激光雷達技術(shù)的基于深度學習的進步

    信息。這使得激光雷達在自動駕駛、無人機、機器人等領(lǐng)域具有廣泛的應用前景。 二、深度學習技術(shù)的發(fā)展 深度學習是機器
    的頭像 發(fā)表于 10-27 10:57 ?1030次閱讀

    AI大模型與深度學習的關(guān)系

    人類的學習過程,實現(xiàn)對復雜數(shù)據(jù)的學習和識別。AI大模型則是指模型的參數(shù)數(shù)量巨大,需要龐大的計算資源來進行訓練和推理。深度學習算法AI大模型
    的頭像 發(fā)表于 10-23 15:25 ?2842次閱讀

    FPGA做深度學習能走多遠?

    。FPGA的優(yōu)勢就是可編程可配置,邏輯資源多,功耗低,而且賽靈思等都在極力推廣。不知道用FPGA做深度學習未來會怎樣發(fā)展,能走多遠,你怎么看。 A:FPGA 在深度
    發(fā)表于 09-27 20:53

    AI入門之深度學習:基本概念

    1、什么是深度學習 1.1、機器學習 ?? ? 圖1:計算機有效工作的常用方法:程序員編寫規(guī)則(程序),計算機遵循這些規(guī)則將輸入數(shù)據(jù)轉(zhuǎn)換為適當?shù)拇鸢浮_@一方法被稱為符號主義人工智能,適合用來解決定
    的頭像 發(fā)表于 08-08 11:24 ?2411次閱讀
    AI入門之<b class='flag-5'>深度</b><b class='flag-5'>學習</b>:基本<b class='flag-5'>概念</b>篇

    深度學習模型有哪些應用場景

    深度學習模型作為人工智能領(lǐng)域的重要分支,已經(jīng)在多個應用場景中展現(xiàn)出其巨大的潛力和價值。這些應用不僅改變了我們的日常生活,還推動了科技進步和產(chǎn)業(yè)升級。以下將詳細探討深度學習模型的20個主
    的頭像 發(fā)表于 07-16 18:25 ?3993次閱讀

    深度學習算法在嵌入式平臺上的部署

    隨著人工智能技術(shù)的飛速發(fā)展深度學習算法在各個領(lǐng)域的應用日益廣泛。然而,將深度學習算法部署到資源受限的嵌入式平臺上,仍然是一個具有挑戰(zhàn)性的任
    的頭像 發(fā)表于 07-15 10:03 ?3074次閱讀

    深度學習中的時間序列分類方法

    發(fā)展,基于深度學習的TSC方法逐漸展現(xiàn)出其強大的自動特征提取和分類能力。本文將從多個角度對深度學習在時間序列分類中的應用進行綜述,探討常用
    的頭像 發(fā)表于 07-09 15:54 ?2080次閱讀

    深度學習中的無監(jiān)督學習方法綜述

    深度學習作為機器學習領(lǐng)域的一個重要分支,近年來在多個領(lǐng)域取得了顯著的成果,特別是在圖像識別、語音識別、自然語言處理等領(lǐng)域。然而,深度學習模型
    的頭像 發(fā)表于 07-09 10:50 ?1673次閱讀

    深度學習在視覺檢測中的應用

    深度學習是機器學習領(lǐng)域中的一個重要分支,其核心在于通過構(gòu)建具有多層次的神經(jīng)網(wǎng)絡(luò)模型,使計算機能夠大量數(shù)據(jù)中自動學習并提取特征,進而實現(xiàn)對復
    的頭像 發(fā)表于 07-08 10:27 ?1264次閱讀
    主站蜘蛛池模板: 林口县| 博兴县| 揭西县| 西丰县| 拉萨市| 枣阳市| 布尔津县| 汝南县| 榆树市| 桃园县| 肇州县| 虹口区| 襄樊市| 兴宁市| 大新县| 大名县| 宝清县| 建平县| 肃南| 涿鹿县| 柯坪县| 庆城县| 罗甸县| 都兰县| 黔西| 康马县| 井研县| 文昌市| 祁门县| 嘉定区| 历史| 天气| 岚皋县| 永德县| 泸州市| 海丰县| 张家港市| 封开县| 黄浦区| 平阴县| 江山市|