女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

【連載】深度學習筆記6:神經網絡優化算法之從SGD到Adam

人工智能實訓營 ? 2018-08-20 12:47 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

從前面的學習中,帶大家一起學會了如何手動搭建神經網絡,以及神經網絡的正則化等實用層面的內容。這些都使得我們能夠更深入的理解神經網絡的機制,而并不是初次接觸深度學習就上手框架,雖然對外宣稱神經網絡是個黑箱機制,但是作為學習者我們極度有必要搞清楚算法在每個環節到底都干了些什么。

今天講的是深度學習的一個大的主題——優化算法。采用何種方式對損失函數進行迭代優化,這是機器學習的一大主題之一,當一個機器學習問題有了具體的模型和評估策略,所有的機器學習問題都可以形式化為一個最優化問題。這也是為什么我們說優化理論和凸優化算法等學科是機器學習一大支柱的原因所在。從純數學的角度來看,所有的數學模型盡管形式不一,各有頭面,但到最后幾乎到可以歸約為最優化問題。所以,有志于奮戰在機器學習和深度學習領域的各位,學好最優化,責無旁貸啊。

要說機器學習和深度學習的優化算法,梯度下降必然是核心所在。神經網絡發展至今,優化算法層出不窮,但大底是出不了梯度下降的框框架架。這一篇筆記,筆者就和大家一起學習和回顧深度學習中常用的優化算法。在前面手動搭建神經網絡的代碼實踐中,我們對于損失函數的優化采用了一般的梯度下降法,所以本篇總結就從梯度下降法開始。

梯度下降法 Gradient Descent


640?wx_fmt=png

想必大家對于梯度下降是很熟悉了,選擇負梯度方向進行參數更新算是常規操作了。話不多說,對于多層神經網絡如何執行梯度下降:

defupdate_parameters_with_gd(parameters,grads,learning_rate):
"""
Updateparametersusingonestepofgradientdescent

Arguments:
parameters--pythondictionarycontainingyourparameterstobeupdated:
parameters['W'+str(l)]=Wl
parameters['b'+str(l)]=bl
grads--pythondictionarycontainingyourgradientstoupdateeachparameters:
grads['dW'+str(l)]=dWl
grads['db'+str(l)]=dbl
learning_rate--thelearningrate,scalar.
Returns:
parameters--pythondictionarycontainingyourupdatedparameters
"""
L=len(parameters)//2#numberoflayersintheneuralnetworks
#Updateruleforeachparameter
forlinrange(L):
parameters['W'+str(l+1)]=parameters['W'+str(l+1)]-learning_rate*grads['dW'+str(l+1)]
parameters['b'+str(l+1)]=parameters['b'+str(l+1)]-learning_rate*grads['db'+str(l+1)]
returnparameters

在上述代碼中,我們傳入含有權值和偏置的字典、梯度字段和更新的學習率作為參數,按照開頭的公式編寫權值更新代碼,一個簡單的多層網絡的梯度下降算法就寫出來了。

小批量梯度下降法 mini-batch Gradient Descent

在工業數據環境下,直接對大數據執行梯度下降法訓練往往處理速度緩慢,這時候將訓練集分割成小一點的子集進行訓練就非常重要了。這個被分割成的小的子集就叫做 mini-batch,意為小批量。對每一個小批量同時執行梯度下降會大大提高訓練效率。在實際利用代碼實現的時候,小批量梯度下降算法通常包括兩個步驟:充分打亂數據(shuffle)和分組組合數據(partition)。如下圖所示。

640?wx_fmt=png
shuffle
640?wx_fmt=png
partition

具體代碼實現為:

def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0):
  """
  Creates a list of random minibatches from (X, Y)

  Arguments:
  X -- input data, of shape (input size, number of examples)
  Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (1, number of examples)
  mini_batch_size -- size of the mini-batches, integer

  Returns:
  mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)
  """

  np.random.seed(seed)    
  m = X.shape[1]         
  mini_batches = []  # Step 1: Shuffle (X, Y)
  permutation = list(np.random.permutation(m))
  shuffled_X = X[:, permutation]
  shuffled_Y = Y[:, permutation].reshape((1,m))  # Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.
  num_complete_minibatches = math.floor(m/mini_batch_size) 
  for k in range(0, num_complete_minibatches):
    mini_batch_X = shuffled_X[:, 0:mini_batch_size]
    mini_batch_Y = shuffled_Y[:, 0:mini_batch_size]

    mini_batch = (mini_batch_X, mini_batch_Y)
    mini_batches.append(mini_batch)  # Handling the end case (last mini-batch < mini_batch_size)
  if m % mini_batch_size != 0:
    mini_batch_X = shuffled_X[:, 0: m-mini_batch_size*math.floor(m/mini_batch_size)]
    mini_batch_Y = shuffled_Y[:, 0: m-mini_batch_size*math.floor(m/mini_batch_size)]

    mini_batch = (mini_batch_X, mini_batch_Y)
    mini_batches.append(mini_batch)  
return mini_batches

小批量梯度下降的實現思路非常清晰,先打亂數據在分組數據,需要注意的細節在于最后一個小批量所含的訓練樣本數,通常而言最后一個小批量會少于前面批量所含樣本數。

隨機梯度下降 Stochastic Gradient Descent

當小批量所含的訓練樣本數為 1 的時候,小批量梯度下降法就變成了隨機梯度下降法(SGD)。SGD雖然以單個樣本為訓練單元訓練速度會很快,但犧牲了向量化運算所帶來的便利性,在較大數據集上效率并不高。
我們可以看一下梯度下降和隨機梯度下降在實現上的差異:

# GD
X = data_input Y = labels parameters = initialize_parameters(layers_dims)
for i in range(0, num_iterations): # Forward propagation a, caches = forward_propagation(X, parameters) # Compute cost. cost = compute_cost(a, Y) # Backward propagation. grads = backward_propagation(a, caches, parameters) # Update parameters. parameters = update_parameters(parameters, grads)

# SGDX = data_input Y = labels parameters = initialize_parameters(layers_dims)
for i in range(0, num_iterations):
for j in range(0, m): # Forward propagation a, caches = forward_propagation(X[:,j], parameters) # Compute cost cost = compute_cost(a, Y[:,j]) # Backward propagation grads = backward_propagation(a, caches, parameters) # Update parameters. parameters = update_parameters(parameters, grads)

所以,從本質上看,梯度下降法、小批量梯度下降法和隨機梯度下降法,并沒有區別。唯一的區別就在于它們執行一次訓練過程所需要用到的訓練樣本數。梯度下降法用到的是全集訓練數據,隨機梯度下降則是單個樣本數據,而小批量則是介于二者之間。

帶動量的梯度下降法(momentum)


正如上圖中看到的一樣,我們假設梯度下降的橫向為參數 W 的下降方向,而偏置 b 的下降方向為縱軸,我們總是希望在縱軸上的震蕩幅度小一點,學習速度慢一點,而在橫軸上學習速度快一點,無論是小批量梯度下降還是隨機梯度下降,好像都不能避免這個問題。為了解決這個問題,帶動量的梯度下降法來了。帶動量的梯度下降考慮歷史梯度的加權平均值作為速率進行優化。執行公式如下:

640?wx_fmt=png
根據上述公式編寫帶動量的梯度下降法實現代碼:

defupdate_parameters_with_momentum(parameters,grads,v,beta,learning_rate):
"""
UpdateparametersusingMomentum

Arguments:
parameters--pythondictionarycontainingyourparameters:
parameters['W'+str(l)]=Wl
parameters['b'+str(l)]=bl
grads--pythondictionarycontainingyourgradientsforeachparameters:
grads['dW'+str(l)]=dWl
grads['db'+str(l)]=dbl
v--pythondictionarycontainingthecurrentvelocity:
v['dW'+str(l)]=...
v['db'+str(l)]=...
beta--themomentumhyperparameter,scalar
learning_rate--thelearningrate,scalar

Returns:
parameters--pythondictionarycontainingyourupdatedparameters
v--pythondictionarycontainingyourupdatedvelocities
"""

L=len(parameters)//2#numberoflayersintheneuralnetworks

#Momentumupdateforeachparameter
forlinrange(L):#computevelocities
v['dW'+str(l+1)]=beta*v['dW'+str(l+1)]+(1-beta)*grads['dW'+str(l+1)]
v['db'+str(l+1)]=beta*v['db'+str(l+1)]+(1-beta)*grads['db'+str(l+1)]#updateparameters
parameters['W'+str(l+1)]=parameters['W'+str(l+1)]-learning_rate*v['dW'+str(l+1)]
parameters['b'+str(l+1)]=parameters['b'+str(l+1)]-learning_rate*v['db'+str(l+1)]
returnparameters,v

實現帶動量的梯度下降的關鍵點有兩個:一是動量是考慮歷史梯度進行梯度下降的,二是這里的需要指定的超參數變成了兩個:一個是學習率 learning_rate,一個是梯度加權參數beta

Adam算法

Adam 全稱為 Adaptive Moment Estimation,是在帶動量的梯度下降法的基礎上融合了一種稱為 RMSprop(加速梯度下降)的算法而成的。相較于帶動量的梯度下降法,無論是RMSprop 還是 Adam,其中的改進思路都在于如何讓橫軸上的學習更快以及讓縱軸上的學習更慢。RMSprop 和 Adam 在帶動量的梯度下降法的基礎上,引入了平方梯度,并對速率進行了偏差糾正。具體計算公式如下:

640?wx_fmt=png

實現代碼如下:

def update_parameters_with_adam(parameters, grads, v, s, t, learning_rate = 0.01,
                beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8):
  """
  Update parameters using Adam

  Arguments:
  parameters -- python dictionary containing your parameters:
          parameters['W' + str(l)] = Wl
          parameters['b' + str(l)] = bl
  grads -- python dictionary containing your gradients for each parameters:
          grads['dW' + str(l)] = dWl
          grads['db' + str(l)] = dbl
  v -- Adam variable, moving average of the first gradient, python dictionary
  s -- Adam variable, moving average of the squared gradient, python dictionary
  learning_rate -- the learning rate, scalar.
  beta1 -- Exponential decay hyperparameter for the first moment estimates 
  beta2 -- Exponential decay hyperparameter for the second moment estimates 
  epsilon -- hyperparameter preventing division by zero in Adam updates

  Returns:
  parameters -- python dictionary containing your updated parameters 
  v -- Adam variable, moving average of the first gradient, python dictionary
  s -- Adam variable, moving average of the squared gradient, python dictionary
  """

  L = len(parameters) // 2         
  v_corrected = {}            
  s_corrected = {}             

  # Perform Adam update on all parameters
  for l in range(L):
    v["dW" + str(l+1)] = beta1 * v["dW" + str(l+1)] + (1 - beta1) * grads['dW'+str(l+1)]
    v["db" + str(l+1)] = beta1 * v["db" + str(l+1)] + (1 - beta1) * grads['db'+str(l+1)]    # Compute bias-corrected first moment estimate. Inputs: "v, beta1, t". Output: "v_corrected".  
    v_corrected["dW" + str(l+1)] = v["dW" + str(l+1)] / (1 - beta1**t)
    v_corrected["db" + str(l+1)] = v["db" + str(l+1)] / (1 - beta1**t)    # Moving average of the squared gradients. Inputs: "s, grads, beta2". Output: "s".
    s["dW" + str(l+1)] = beta2 * s["dW" + str(l+1)] + (1 - beta2) * (grads["dW" + str(l+1)])**2
    s["db" + str(l+1)] = beta2 * s["db" + str(l+1)] + (1 - beta2) * (grads["db" + str(l+1)])**2


    # Compute bias-corrected second raw moment estimate. Inputs: "s, beta2, t". Output: "s_corrected".
    s_corrected["dW" + str(l+1)] = s["dW" + str(l+1)] / (1 - beta2**t)
    s_corrected["db" + str(l+1)] = s["db" + str(l+1)] / (1 - beta2**t)    # Update parameters. Inputs: "parameters, learning_rate, v_corrected, s_corrected, epsilon". Output: "parameters".

    parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * v_corrected["dW" + str(l+1)] / (np.sqrt(s_corrected["dW" + str(l+1)]) + epsilon)
    parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * v_corrected["db" + str(l+1)] / (np.sqrt(s_corrected["db" + str(l+1)]) + epsilon)  
return parameters, v, s

除了以上這些算法,還有一些像 Adadelta 之類的算法我們沒有提到,有需要了解的同學可以自行查找相關資料。最后用一個圖來展示各種優化算法的效果:




本文來自《自興動腦人工智能》項目部:凱文




聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    BP神經網絡的調參技巧與建議

    BP神經網絡的調參是一個復雜且關鍵的過程,涉及多個超參數的優化和調整。以下是一些主要的調參技巧與建議: 一、學習率(Learning Rate) 重要性 :學習率是BP
    的頭像 發表于 02-12 16:38 ?778次閱讀

    如何優化BP神經網絡學習

    訓練過程中發生震蕩,甚至無法收斂最優解;而過小的學習率則會使模型收斂速度緩慢,容易陷入局部最優解。因此,正確設置和調整學習率對于訓練高效、準確的神經網絡模型至關重要。 二、
    的頭像 發表于 02-12 15:51 ?904次閱讀

    什么是BP神經網絡的反向傳播算法

    神經網絡(即反向傳播神經網絡)的核心,它建立在梯度下降法的基礎上,是一種適合于多層神經元網絡學習算法。該
    的頭像 發表于 02-12 15:18 ?742次閱讀

    BP神經網絡深度學習的關系

    ),是一種多層前饋神經網絡,它通過反向傳播算法進行訓練。BP神經網絡由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調整網絡權重,目的是最小化
    的頭像 發表于 02-12 15:15 ?828次閱讀

    深度學習入門:簡單神經網絡的構建與實現

    深度學習中,神經網絡是核心模型。今天我們用 Python 和 NumPy 構建一個簡單的神經網絡神經網絡由多個
    的頭像 發表于 01-23 13:52 ?509次閱讀

    深度學習中的卷積神經網絡模型

    深度學習近年來在多個領域取得了顯著的進展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經網絡作為深度學習的一個分支,因其在圖像處理
    的頭像 發表于 11-15 14:52 ?825次閱讀

    卷積神經網絡的基本原理與算法

    ),是深度學習的代表算法之一。 一、基本原理 卷積運算 卷積運算是卷積神經網絡的核心,用于提取圖像中的局部特征。 定義卷積核:卷積核是一個小的矩陣,用于在輸入圖像上滑動,提取局部特征。
    的頭像 發表于 11-15 14:47 ?1753次閱讀

    Moku人工神經網絡101

    不熟悉神經網絡的基礎知識,或者想了解神經網絡如何優化加速實驗研究,請繼續閱讀,探索基于深度學習的現代智能化實驗的廣闊應用前景。什么是
    的頭像 發表于 11-01 08:06 ?643次閱讀
    Moku人工<b class='flag-5'>神經網絡</b>101

    如何構建多層神經網絡

    構建多層神經網絡(MLP, Multi-Layer Perceptron)模型是一個在機器學習深度學習領域廣泛使用的技術,尤其在處理分類和回歸問題時。在本文中,我們將深入探討如何從頭
    的頭像 發表于 07-19 17:19 ?1532次閱讀

    殘差網絡深度神經網絡

    殘差網絡(Residual Network,通常簡稱為ResNet) 是深度神經網絡的一種 ,其獨特的結構設計在解決深層網絡訓練中的梯度消失和梯度爆炸問題上取得了顯著的突破,并因此成為
    的頭像 發表于 07-11 18:13 ?1593次閱讀

    神經網絡優化器有哪些

    神經網絡優化器是深度學習中用于調整網絡參數以最小化損失函數的重要工具。這些優化器通過不同的策略來
    的頭像 發表于 07-11 16:33 ?1105次閱讀

    卷積神經網絡的基本概念、原理及特點

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習算法,它在圖像識別、視頻分析、自然語言處理等領域有著廣泛的應用。本文將詳細介紹卷積
    的頭像 發表于 07-11 14:38 ?2420次閱讀

    神經網絡辨識模型具有什么特點

    ,可以對未知數據進行預測,具有很好的泛化能力。 自學習能力 :神經網絡通過反向傳播算法優化算法,可以自動調整
    的頭像 發表于 07-11 11:12 ?862次閱讀

    簡單認識深度神經網絡

    深度神經網絡(Deep Neural Networks, DNNs)作為機器學習領域中的一種重要技術,特別是在深度學習領域,已經取得了顯著的
    的頭像 發表于 07-10 18:23 ?1996次閱讀

    BP神經網絡學習機制

    BP神經網絡(Backpropagation Neural Network),即反向傳播神經網絡,是一種基于梯度下降算法的多層前饋神經網絡,其學習
    的頭像 發表于 07-10 15:49 ?1210次閱讀
    主站蜘蛛池模板: 舞钢市| 卢龙县| 广河县| 彭水| 石泉县| 永善县| 河津市| 无棣县| 利辛县| 马公市| 四子王旗| 南乐县| 台中县| 阜平县| 革吉县| 锡林浩特市| 宣恩县| 台北县| 萨嘎县| 庆城县| 驻马店市| 深泽县| 板桥市| 昆明市| 滦平县| 嫩江县| 凌云县| 兴业县| 新野县| 辽中县| 白沙| 陆河县| 安丘市| 湛江市| 乌兰县| 丹寨县| 永德县| 武汉市| 温泉县| 巴青县| 商丘市|