女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

深度學習筆記5:正則化與dropout

人工智能實訓營 ? 2018-08-24 18:31 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在筆記 4 中,詳細闡述了機器學習中利用正則化防止過擬合的基本方法,對 L1 和 L2 范數進行了通俗的解釋。為了防止深度神經網絡出現過擬合,除了給損失函數加上 L2 正則化項之外,還有一個很著名的方法——dropout.

廢話少說,咱們單刀直入正題。究竟啥是 dropout ? dropout 是指在神經網絡訓練的過程中,對所有神經元按照一定的概率進行消除的處理方式。在訓練深度神經網絡時,dropout 能夠在很大程度上簡化神經網絡結構,防止神經網絡過擬合。所以,從本質上而言,dropout 也是一種神經網絡的正則化方法。

假設我們要訓練了一個 4 層(3個隱層)的神經網絡,該神經網絡存在著過擬合。于是我們決定使用 dropout 方法來處理,dropout 為該網絡每一層的神經元設定一個失活(drop)概率,在神經網絡訓練過程中,我們會丟棄一些神經元節點,在網絡圖上則表示為該神經元節點的進出連線被刪除。最后我們會得到一個神經元更少、模型相對簡單的神經網絡,這樣一來原先的過擬合情況就會大大的得到緩解。這樣說似乎并沒有將 dropout 正則化原理解釋清楚,我們繼續深究一下:為什么 dropout 可以可以通過正則化發揮防止過擬合的功能?

因為 dropout 可以隨時隨機的丟棄任何一個神經元,神經網絡的訓練結果不會依賴于任何一個輸入特征,每一個神經元都以這種方式進行傳播,并為神經元的所有輸入增加一點權重,dropout 通過傳播所有權重產生類似于 L2 正則化收縮權重的平方范數的效果,這樣的權重壓縮類似于 L2 正則化的權值衰減,這種外層的正則化起到了防止過擬合的作用。

所以說,總體而言,dropout 的功能類似于 L2 正則化,但又有所區別。另外需要注意的一點是,對于一個多層的神經網絡,我們的 dropout 某層神經元的概率并不是一刀切的。對于不同神經元個數的神經網絡層,我們可以設置不同的失活或者保留概率,對于含有較多權值的層,我們可以選擇設置較大的失活概率(即較小的保留概率)。所以,總結來說就是如果你擔心某些層所含神經元較多或者比其他層更容易發生過擬合,我們可以將該層的失活概率設置的更高一些。

說了這么多,總算大致把 dropout 說明白了。那 dropout 這種操作在實際的 python 編程中該如何實現呢?以一個三層的神經網絡為例,首先我們需要定義一個 3 層的 dropout 向量,然后將其與保留概率 keep-prob 進行比較生成一個布爾值向量,再將其與該層的神經元激活輸出值進行乘積運算,最后擴展上一步的計算結果,將其除以 keep-prob 即可。但在實際編程中就沒說的這么容易了,我們需要對整個神經網絡的計算過程進行重新定義,包括前向傳播和反向傳播的計算定義。

含 dropout 的前向計算定義如下:

def forward_propagation_with_dropout(X, parameters, keep_prob = 0.5):
  np.random.seed(1)  # retrieve parameters
  W1 = parameters["W1"]
  b1 = parameters["b1"]
  W2 = parameters["W2"]
  b2 = parameters["b2"]
  W3 = parameters["W3"]
  b3 = parameters["b3"]  # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
  Z1 = np.dot(W1, X) + b1
  A1 = relu(Z1)

  D1 = np.random.rand(A1.shape[0], A1.shape[1])  
  D1 = D1 < keep_prob ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
 ? ?A1 = np.multiply(D1, A1) ? ? ? ? ? ? ? ? ? ? ? ? 
 ? ?A1 = A1 / keep_prob ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

 ? ?Z2 = np.dot(W2, A1) + b2
 ? ?A2 = relu(Z2)

 ? ?D2 = np.random.rand(A2.shape[0], A2.shape[1])   
  D2 = D2 < keep_prob ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
 ? ?A2 = np.multiply(D2, A2) ? ? ? ? ? ? ? ? ? ? ? 
 ? ?A2 = A2 / keep_prob ? ? ? ? ? ? ? ? ? ? ? ? ? 
 ? ?Z3 = np.dot(W3, A2) + b3
 ? ?A3 = sigmoid(Z3)

 ? ?cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) ? ?
return A3, cache

以上代碼基本體現了 dropout 的實現的四步流程。

含 dropout 的反向傳播計算定義如下:

def backward_propagation_with_dropout(X, Y, cache, keep_prob):

  m = X.shape[1]
  (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cache

  dZ3 = A3 - Y
  dW3 = 1./m * np.dot(dZ3, A2.T)
  db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)
  dA2 = np.dot(W3.T, dZ3)

  dA2 = np.multiply(dA2, D2)  
  dA2 = dA2 / keep_prob    

  dZ2 = np.multiply(dA2, np.int64(A2 > 0))
  dW2 = 1./m * np.dot(dZ2, A1.T)
  db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)

  dA1 = np.dot(W2.T, dZ2)

  dA1 = np.multiply(dA1, D1)  
  dA1 = dA1 / keep_prob      

  dZ1 = np.multiply(dA1, np.int64(A1 > 0))
  dW1 = 1./m * np.dot(dZ1, X.T)
  db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)

  gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2,         "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, 
         "dZ1": dZ1, "dW1": dW1, "db1": db1}  
return gradients

在定義反向傳播計算函數時,我們必須丟棄和執行前向傳播時一樣的神經元。
最后帶有 dropout 的分類效果如下所示:


所以,總結而言,dropout 就是在正常的神經網絡基礎上給每一層的每一個神經元加了一道概率流程來隨機丟棄某些神經元以達到防止過擬合的目的。

本文由《自興動腦人工智能》項目部 凱文 投稿。


聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 人工智能
    +關注

    關注

    1806

    文章

    48960

    瀏覽量

    248552
  • 機器學習
    +關注

    關注

    66

    文章

    8500

    瀏覽量

    134438
  • 深度學習
    +關注

    關注

    73

    文章

    5558

    瀏覽量

    122719
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    IPC2221簡略學習筆記

    關于IPC2221的學習筆記
    發表于 03-14 18:07 ?5次下載

    軍事應用中深度學習的挑戰與機遇

    人工智能尤其是深度學習技術的最新進展,加速了不同應用領域的創新與發展。深度學習技術的發展深刻影響了軍事發展趨勢,導致戰爭形式和模式發生重大變化。本文將概述
    的頭像 發表于 02-14 11:15 ?513次閱讀

    BP神經網絡與深度學習的關系

    ),是一種多層前饋神經網絡,它通過反向傳播算法進行訓練。BP神經網絡由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調整網絡權重,目的是最小網絡的輸出誤差。 二、深度學習的定義與發展
    的頭像 發表于 02-12 15:15 ?825次閱讀

    NPU在深度學習中的應用

    隨著人工智能技術的飛速發展,深度學習作為其核心驅動力之一,已經在眾多領域展現出了巨大的潛力和價值。NPU(Neural Processing Unit,神經網絡處理單元)是專門為深度學習
    的頭像 發表于 11-14 15:17 ?1863次閱讀

    Pytorch深度學習訓練的方法

    掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學習訓練。
    的頭像 發表于 10-28 14:05 ?631次閱讀
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>學習</b>訓練的方法

    GPU深度學習應用案例

    GPU在深度學習中的應用廣泛且重要,以下是一些GPU深度學習應用案例: 一、圖像識別 圖像識別是深度學習
    的頭像 發表于 10-27 11:13 ?1300次閱讀

    FPGA加速深度學習模型的案例

    :DE5Net_Conv_Accelerator 應用場景 :面向深度學習的開源項目,實現了AlexNet的第一層卷積運算加速。 技術特點 : 采用了Verilog語言進行編程,與PCIe接口相集成,可以直接插入到
    的頭像 發表于 10-25 09:22 ?1172次閱讀

    AI大模型與深度學習的關系

    人類的學習過程,實現對復雜數據的學習和識別。AI大模型則是指模型的參數數量巨大,需要龐大的計算資源來進行訓練和推理。深度學習算法為AI大模型提供了核心的技術支撐,使得大模型能夠更好地擬
    的頭像 發表于 10-23 15:25 ?2841次閱讀

    FPGA做深度學習能走多遠?

    的發展前景較為廣闊,但也面臨一些挑戰。以下是一些關于 FPGA 在深度學習中應用前景的觀點,僅供參考: ? 優勢方面: ? 高度定制的計算架構:FPGA 可以根據深度
    發表于 09-27 20:53

    PyTorch深度學習開發環境搭建指南

    PyTorch作為一種流行的深度學習框架,其開發環境的搭建對于深度學習研究者和開發者來說至關重要。在Windows操作系統上搭建PyTorch環境,需要綜合考慮多個方面,包括軟件安裝、
    的頭像 發表于 07-16 18:29 ?2430次閱讀

    深度學習算法在嵌入式平臺上的部署

    隨著人工智能技術的飛速發展,深度學習算法在各個領域的應用日益廣泛。然而,將深度學習算法部署到資源受限的嵌入式平臺上,仍然是一個具有挑戰性的任務。本文將從嵌入式平臺的特點、
    的頭像 發表于 07-15 10:03 ?3071次閱讀

    cnn常用的幾個模型有哪些

    CNN(卷積神經網絡)是一種深度學習模型,廣泛應用于圖像識別、自然語言處理等領域。以下是一些常用的CNN模型: LeNet-5:LeNet-5是最早的卷積神經網絡之一,由Yann Le
    的頭像 發表于 07-11 14:58 ?1874次閱讀

    深度學習模型中的過擬合與正則

    測試數據或新數據上表現不佳的現象。為了解決這個問題,正則(Regularization)技術應運而生,成為深度學習中不可或缺的一部分。本文將從過擬合的原因、表現、
    的頭像 發表于 07-09 15:56 ?1848次閱讀

    深度學習中的時間序列分類方法

    時間序列分類(Time Series Classification, TSC)是機器學習深度學習領域的重要任務之一,廣泛應用于人體活動識別、系統監測、金融預測、醫療診斷等多個領域。隨著深度
    的頭像 發表于 07-09 15:54 ?2078次閱讀

    深度學習中的無監督學習方法綜述

    深度學習作為機器學習領域的一個重要分支,近年來在多個領域取得了顯著的成果,特別是在圖像識別、語音識別、自然語言處理等領域。然而,深度學習模型
    的頭像 發表于 07-09 10:50 ?1671次閱讀
    主站蜘蛛池模板: 沽源县| 阜宁县| 临洮县| 雅安市| 临澧县| 新兴县| 吕梁市| 吉隆县| 凌源市| 耒阳市| 长岭县| 博白县| 琼结县| 南涧| 宝应县| 邵东县| 资中县| 瑞丽市| 密云县| 海宁市| 大悟县| 平遥县| 湘潭县| 安溪县| 肇东市| 大城县| 宁城县| 固镇县| 朝阳县| 龙里县| 资兴市| 剑河县| 宜州市| 资阳市| 镇远县| 化德县| 宁阳县| 宜都市| 舒城县| 白城市| 青铜峡市|