女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

三菱電機開發了首款6.5kV全SiC(Silicon Carbide)功率模塊

GCME-SCD ? 來源:未知 ? 作者:李倩 ? 2018-09-13 15:04 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

摘 要

三菱電機開發了首款6.5kV全SiC(Silicon Carbide)功率模塊,采用高絕緣耐壓HV100標準封裝(100mmí140mm)。通過電磁仿真電路仿真,優化了HV100封裝的內部設計,并通過實際試驗驗證了穩定的電氣特性。6.5kV HV100全SiC功率模塊為了提高功率密度,將SiC SBD(SchottkyBarrierDiode)與SiC MOSFET芯片集成在一起。

在續流時,集成的SiC SBD會導通,而SiC MOSFET的寄生體二極管不會導通,所以避免了雙極性退化效應發生。本文對比了Si IGBT功率模塊(Si IGBT芯片和Si二極管芯片)、傳統全SiC MOSFET功率模塊(SiC MOSFET芯片,無外置SBD)和新型全SiC MOSFET功率模塊(SiC MOSFET和SiC SBD集成在同一個芯片上),結果表明新型全SiC MOSFET功率模塊在高溫、高頻工況下優勢明顯。

1、引 言

SiC材料具有優異的物理性能,由此研發的SiC功率模塊可以增強變流器的性能[1-2]。相對Si芯片,全SiC芯片可以用更小的體積實現更高耐壓、更低損耗,給牽引變流系統和電力傳輸系統的研發設計帶來更多便利。3.3kV全SiC功率模塊已經在牽引變流器中得到應用,有著顯著的節能、減小變流器體積和重量等作用[3-4]。6.5kV Si IGBT模塊已經用于高鐵和電力傳輸系統,這些市場期待6.5kV SiC功率模塊能帶來更多好處?;诖?,三菱電機開發了6.5kV全SiC MOSFET功率模塊[5-7],其采用HV100標準封裝[8],如圖1所示。這個封裝為方便并聯應用而設計,電氣穩定性顯得尤為重要。

本文介紹了6.5kV新型全SiC MOSFET功率模塊的內部結構和電氣特性,相對于傳統的Si IGBT模塊、傳統全SiC MOSFET功率模塊,新型全SiC MOSFET功率模塊在靜態特性、動態特性和損耗方面優勢明顯。

2、6.5kV新型SiC MOSFET功率模塊特性

2.1 集成SiC SBD的SiC-MOSFET芯片特性

HV100封裝6.5kV新型全SiC MOSFET功率模塊采用SiC MOSFET和SiC SBD一體化芯片技術,最高工作結溫可達175℃。

模塊設計中的一個重要難點是避免SiC MOSFET的寄生體二極管(PIN二極管)導通,一旦PIN二極管中有少子(空穴)電流流向二極管的陰極(SiC MOSFET的漏極),因為SiC芯片外延層特性,雙極性退化效應發生的可能性就會增加。在續流狀態下,SiC SBD的正向飽和壓降在全電流范圍內比SiC MOSFET的寄生體二極管要低。

獨立放置的SiC MOSFET 和SiC SBD芯片如圖2(a)所示,SiC SBD的面積是SiC MOSFET芯片面積的3倍;如果將SiC SBD集成在SiC MOSFET芯片上面,如圖2(b)所示,總面積是單個SiC MOSFET芯片面積的1.05倍。集成在SiC MOSFET芯片上面的SiC SBD采用垂直元胞結構,在續流時承載全部反向電流,同時使SiC MOSFET芯片的寄生體二極管不流過電流,從而消除雙極性退化效應。如圖2所示,由于芯片面積減小,模塊整體體積就可以減小。相對于傳統的Si IGBT模塊和傳統全SiC MOSFET功率模塊,采用相同HV100封裝的新型全SiC MOSFET功率模塊可以實現業界最高的功率密度。

2.2 新型SiC MOSFET功率模塊的優化設計

6.5kV新型全SiC MOSFET功率模塊內部采用半橋拓撲,一般的大功率應用可以采用并聯連接來提高輸出功率。高電壓功率模塊在高頻下運行,需要考慮模塊自身的寄生電容、寄生電感和寄生阻抗等。3D電磁仿真是驗證內部封裝結構和芯片布局的一種有效方法。電磁干擾可能帶來三種不良的影響:一是開關過程中的電流反饋;二是上、下橋臂開關特性不一致;三是柵極電壓振蕩。電磁干擾會增加模塊內部功率芯片布置、綁定線連接及其他電氣結構設計的復雜性。

我們構建了6.5kV新型全SiC MOSFET功率模塊的內部等效電路和芯片模型,通過3D電磁仿真和電路仿真,驗證了功率模塊設計的合理性。

2.2.1

優化開關速度

如果在模塊封裝設計時沒有考慮電磁干擾,在實際工況中,就會產生開關過程中的電流反饋,使芯片的固有開關速度發生變化,進而可能造成上橋臂和下橋臂的開關速度不一致。負的電流反饋可以降低芯片的開關速度,導致芯片的開關損耗增加,因此開關速度的不平衡可以導致模塊內部各個芯片的熱分布不一致。圖3顯示了6.5kV新型全SiC MOSFET功率模塊在有電磁干擾和無電磁干擾下的仿真開通波形,從圖中可以看出,通過優化內部電氣設計,電磁干擾對6.5kV新型全SiC MOSFET功率模塊沒有影響。圖4為6.5kV新型全SiC MOSFET功率模塊上橋臂和下橋臂的仿真開通波形,兩者的波形幾乎完全一樣,在實際測試時也驗證了這一點。

2.2.2

柵極電壓振蕩抑制

在高電流密度功率模塊中,內部有很多功率芯片并聯,寄生電容和寄生電感可能組成復雜的諧振電路,從而可能造成柵極電壓振蕩。柵極電壓振蕩幅度過大,可能損壞柵極。通常可以增大芯片內部的門極電阻來達到抑制振蕩的目的,但是增大內部門極電阻會造成開關損耗增加,在設計模塊時,我們希望內部柵極電阻盡可能小。借助仿真手段,在保持小的柵極電阻的情況下,我們通過優化內部電氣布局很好地抑制了柵極電壓振蕩。

圖5為6.5kV新型全SiC MOSFET功率模塊在優化內部設計之前和優化之后的柵極電壓仿真波形。優化之前,有一個比較大的振蕩,振幅可達13V。優化之后,柵極電壓振蕩得到抑制,幅度只有2V,在實際測試中也驗證了這一點。

2.3 靜態特性參數對比

圖6為400A IGBT模塊(從額定電流1000A IGBT轉換而來)、400A傳統全SiC MOSFET功率模塊(不含SiC SBD)和400A新型全SiCMOSFET功率模塊通態壓降對比。在150℃時,SiIGBT的通態電阻比較低,這是因為Si IGBT是雙極性器件,而SiC MOSFET屬于單極性器件。400A傳統全SiC MOSFET功率模塊(不含SiC SBD)和400A新型全SiCMOSFET功率模塊芯片面積幾乎相同,所以在全溫度范圍內其通態電阻也幾乎相同。

二極管正向壓降對比如圖7和圖8所示。圖7是各模塊件在非同步整流狀態(MOSFET不導通)下二極管電流特性的對比,圖8為各模塊在同步整流狀態(MOSFET導通)下二極管電流特性的對比。從圖中可以看出,在非同步整流狀態下,傳統SiC-MOSFET功率模塊的表現呈非線性特性;而新型全SiC MOSFET功率模塊,無論在同步整流還是非同步整流時,都呈線性特征。由上,無論在MOSFET導通狀態,還是在二極管導通狀態,全SiC MOSFET功率模塊都表現出單極性器件的特性。

2.4 動態特性參數對比

圖9為新型全SiC MOSFET功率模塊在3600V/400A 在室溫和高溫下(175℃)的開通波形對比,從圖中可以看出,經過內部結構優化的新型全SiC MOSFET功率模塊上橋臂和下橋臂在室溫和高溫下的開關速度幾乎完全一樣,所以其室溫和高溫下的損耗也幾乎一樣。一般來說,隨著溫度的增加(載流子壽命增加),反向恢復電流也會隨之增加,但是如圖9所示,高溫下的反向恢復電荷(Qrr)相對常溫增加很少。與靜態特性一樣,新型全SiC MOSFET功率模塊在動態特性上表現出單極性器件的特性。

2.5 實測開關波形和開關損耗對比

圖10為傳統全SiC MOSFET功率模塊和新型全SiC MOSFET功率模塊的開通波形在室溫和175℃下對比,從圖中可以看出在室溫下,兩者波形很接近,但是在175℃下,傳統全SiCMOSFET功率模塊反向恢復電流更大,VDS下降速度更慢。而新型全SiC MOSFET功率模塊因為反向恢復電流小,所以其VDS下降速度更快。同時這些特性表明兩者的開通損耗和反向恢復損耗在室溫下非常接近,但是在高溫下,新型全SiC MOSFET功率模塊的開通損耗和反向恢復損耗相對更小,主要原因是反向恢復時,新型全SiCMOSFET功率模塊的寄生體二極管不導通。

在175℃時,傳統全SiC MOSFET功率模塊在開通時會有一個比較大的振蕩,而振蕩可能造成電磁干擾,進而影響模塊的安全工作。實際應用中,希望這個振蕩越小越好,為了抑制振蕩,可以減緩模塊開關速度或者增加外部吸收電路。但是對于新型全SiC MOSFET功率模塊,在高溫下振蕩非常小,無需采取額外措施來抑制振蕩。

高壓全SiC MOSFET功率模塊中,造成以上差異的主要原因是傳統全SiC MOSFET功率模塊有一層厚的外延層,在反向恢復時會產生比較大的反向恢復電流。

圖11為Si IGBT模塊、傳統全SiC MOSFET功率模塊和新型全SiC MOSFET功率模塊的開關損耗對比(Si IGBT模塊與全SiCMOSFET功率模塊分別設置在最佳開關速度)。從圖中可以看出,全SiC MOSFET功率模塊損耗明顯小于Si IGBT模塊。并且,在175℃時,新型全SiC MOSFET功率模塊比傳統全SiC MOSFET功率模塊開通損耗低18%,反向恢復損耗低80%。

3、損耗對比

在開關頻率fs=0.5kHz、2kHz和10kHz,PF=0.8,調制比M=1,母線電壓VCC=3600V,輸出電流IO=200A的工況下,對比了采用Si IGBT模塊(150℃)、傳統全SiC MOSFET功率模塊(175℃)和新型全SiC MOSFET功率模塊(175℃)的逆變器損耗,如圖12所示。從圖中可以看出,在fs=0.5kHz,通態損耗占很大比例,此時全SiC MOSFET功率模塊比Si IGBT模塊低64%,同時傳統全SiC MOSFET功率模塊和新型全SiC MOSFET功率模塊相差很小。

在fs=2kHz,全SiC MOSFET功率模塊比Si IGBT模塊低85%,而新型全SiC MOSFET功率模塊相對傳統全SiCMOSFET功率模塊低7%。在fs=10kHz,開關損耗占據很大比例,此時全SiC MOSFET功率模塊比Si IGBT功率模塊低92%,而新型全SiC MOSFET功率模塊相對傳統全SiCMOSFET功率模塊低16%。從以上可以看出,新型全SiCMOSFET功率模塊更適合高頻、高溫應用。

4、結 論

三菱電機開發了業界首款采用HV100封裝的新型6.5kV全SiC MOSFET功率模塊。通過電磁仿真、電路仿真和實際測試,確認了內部電氣設計的合理性。同時,新型6.5kV全SiC MOSFET功率模塊采用SiC SBD和SiC MOSFET一體化芯片設計,減小了模塊體積,實現了6.5kV業界最高的功率密度。通過靜態測試和動態測試,確認了新型6.5kV全SiC MOSFET功率模塊無論在SiC MOSFET導通還是SiC SBD導通時都表現出單極性器件的特性,且其SiC SBD在高溫下反向恢復電流小,沒有雙極性退化效應。新型6.5kV全SiC MOSFET功率模塊在高溫下導通時VDS下降更快,其導通損耗更小,且沒有振蕩現象發生。

同時,對比了Si IGBT模塊、傳統全SiC MOSFET功率模塊和新型全SiC MOSFET功率模塊的損耗,在開關頻率為10kHz時,新型全SiCMOSFET功率模塊的損耗比Si IGBT模塊大概低92%,比傳統全SiC MOSFET功率模塊相對低16%。相對傳統全SiC MOSFET功率模塊,由于SiC MOSFET體二極管與集成的SiC SBD之間反向恢復特性的不同,新型全SiC MOSFET功率模塊在高溫、高頻等應用工況下更有優勢。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • MOSFET
    +關注

    關注

    150

    文章

    8508

    瀏覽量

    219922
  • 三菱電機
    +關注

    關注

    0

    文章

    195

    瀏覽量

    21125
  • SiC
    SiC
    +關注

    關注

    31

    文章

    3210

    瀏覽量

    64942

原文標題:【論文】集成SiC SBD的6.5kV全SiC MOSFET功率模塊

文章出處:【微信號:GCME-SCD,微信公眾號:GCME-SCD】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    一文了解三菱電機高壓SiC芯片技術

    三菱電機開發了高耐壓SiC MOSFET,并將其產品化,率先將其應用于驅動鐵路車輛的變流器中,是一家在市場上擁有良好業績記錄的SiC器件制造
    的頭像 發表于 12-18 17:35 ?1311次閱讀
    一文了解<b class='flag-5'>三菱</b><b class='flag-5'>電機</b>高壓<b class='flag-5'>SiC</b>芯片技術

    三菱電機超小型SiC DIPIPM解析

    在Si-IGBT的DIPIPM基礎上,三菱電機開發了超小型SiC DIPIPM,保持相同的封裝及管腳配置。本文帶你一覽超小型
    的頭像 發表于 01-08 13:48 ?1630次閱讀
    <b class='flag-5'>三菱</b><b class='flag-5'>電機</b>超小型<b class='flag-5'>全</b><b class='flag-5'>SiC</b> DIPIPM解析

    三菱電機工業用NX封裝SiC功率模塊解析

    三菱電機開發了工業應用的NX封裝SiC功率模塊,采
    的頭像 發表于 01-22 10:58 ?2405次閱讀
    <b class='flag-5'>三菱</b><b class='flag-5'>電機</b>工業用NX封裝<b class='flag-5'>全</b><b class='flag-5'>SiC</b><b class='flag-5'>功率</b><b class='flag-5'>模塊</b>解析

    三菱電機提供SiC功率半導體模塊

    三菱電機株式會社定于7月31日開始,依次提供5個品種的SiC功率半導體模塊,以滿足家電產品與工業設備對應用
    發表于 07-25 15:59 ?858次閱讀

    三菱電機成功開發6.5kVSiC功率模塊 實現世界最高功率密度額定輸出功率

    1月31日,三菱電機株式會社宣布已成功開發6.5kV耐壓等級SiC
    的頭像 發表于 02-03 11:52 ?9562次閱讀

    三菱電機SiC功率模塊的發展里程碑

    2015年4月,Bodo’s Power上報道了三菱電機1800 A/1200 V的SiC 2in1
    的頭像 發表于 05-26 10:38 ?1.3w次閱讀
    <b class='flag-5'>三菱</b><b class='flag-5'>電機</b><b class='flag-5'>SiC</b><b class='flag-5'>功率</b><b class='flag-5'>模塊</b>的發展里程碑

    6.5kV隔離RS485+1W電源

    6.5kV隔離RS485+1W電源
    發表于 05-16 19:38 ?9次下載
    <b class='flag-5'>6.5kV</b>隔離RS485+1W電源

    三菱電機開始提供工業設備用NX封裝SiC功率半導體模塊樣品

    三菱電機集團近日(2023年6月13日)宣布,將于6月14日開始提供工業設備用NX封裝SiC功率半導體
    的頭像 發表于 06-15 11:16 ?1465次閱讀

    三菱電機將投資Coherent的SiC業務 發展SiC功率器件業務

    三菱電機將投資Coherent的新SiC業務; 旨在通過與Coherent的縱向合作來發展SiC功率器件業務。
    的頭像 發表于 10-18 19:17 ?865次閱讀

    三菱電機與Nexperia共同開啟硅化碳功率半導體開發

    三菱電機公司宣布將與Nexperia B.V.結成戰略合作伙伴關系,共同為電力電子市場開發硅碳(SiC功率半導體。
    的頭像 發表于 11-30 16:14 ?679次閱讀
    <b class='flag-5'>三菱</b><b class='flag-5'>電機</b>與Nexperia共同開啟硅化碳<b class='flag-5'>功率</b>半導體<b class='flag-5'>開發</b>

    三菱電機發布新型低電流SiC-MOSFET模塊

    三菱電機集團近日宣布推出兩新型低電流版本的肖特基勢壘二極管(SBD)嵌入式SiC-MOSFET模塊,以滿足大型工業設備市場對高性能逆變器日
    的頭像 發表于 06-12 14:51 ?1132次閱讀

    三菱電機功率器件發展史

    三菱電機從事功率半導體開發和生產已有六十多年的歷史,從早期的二極管、晶閘管,到MOSFET、IGBT和SiC器件,
    的頭像 發表于 07-24 10:17 ?1119次閱讀
    <b class='flag-5'>三菱</b><b class='flag-5'>電機</b><b class='flag-5'>功率</b>器件發展史

    三菱電機SiC器件的發展歷程

    三菱電機從事SiC器件開發和應用研究已有近30年的歷史,從基礎研究、應用研究到批量商業化,從2英寸、4英寸晶圓到6英寸晶圓,三菱
    的頭像 發表于 07-24 10:24 ?1152次閱讀
    <b class='flag-5'>三菱</b><b class='flag-5'>電機</b><b class='flag-5'>SiC</b>器件的發展歷程

    三菱電機高壓SiC模塊封裝技術解析

    SiC芯片可以高溫工作,與之對應的連接材料和封裝材料都需要相應的變更。三菱電機高壓SiC模塊支持175℃工作結溫,其封裝技術相對傳統IGBT
    的頭像 發表于 02-12 11:26 ?582次閱讀
    <b class='flag-5'>三菱</b><b class='flag-5'>電機</b>高壓<b class='flag-5'>SiC</b><b class='flag-5'>模塊</b>封裝技術解析

    三菱電機開始提供SiC和混合SiC SLIMDIP樣品

    三菱電機集團今日宣布,將于4月22日開始供應兩新型空調及家電用SLIMDIP系列功率半導體模塊樣品——
    的頭像 發表于 04-16 14:58 ?470次閱讀
    <b class='flag-5'>三菱</b><b class='flag-5'>電機</b>開始提供<b class='flag-5'>全</b><b class='flag-5'>SiC</b>和混合<b class='flag-5'>SiC</b> SLIMDIP樣品
    主站蜘蛛池模板: 长海县| 平昌县| 连城县| 贺州市| 饶河县| 丽江市| 黄梅县| 政和县| 义马市| 英德市| 临潭县| 鸡西市| 萍乡市| 礼泉县| 汝城县| 云龙县| 云霄县| 海南省| 兴宁市| 五家渠市| 河北区| 赤壁市| 舒兰市| 枝江市| 营山县| 长宁县| 石楼县| 墨脱县| 姜堰市| 三明市| 杭锦后旗| 哈尔滨市| 苏尼特右旗| 连州市| 斗六市| 玉树县| 凤冈县| 甘德县| 通辽市| 龙江县| 奎屯市|