女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

神經網絡運用領域

工程師 ? 來源:未知 ? 作者:姚遠香 ? 2018-11-24 09:28 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

1.圖像和物體識別

機器在圖像和物體識別方面有很好的記錄。GeoffHinton發明的膠囊網絡幾乎減少了以前的最佳錯誤率,這個測試挑戰軟件識別玩具。即使視圖與之前分析的視圖不同,在各種掃描中使用增加量的這些膠囊也允許系統更好地識別物體。

另一個例子來自一個最先進的網絡,該網絡經過標記圖像數據庫的訓練,能夠比相同任務訓練100小時的博士更好地分類對象。

2.電子游戲

Google的DeepMind使用深度學習技術,被稱為深度強化學習。研究人員用這種方法教計算機玩Atari游戲Breakout。電腦沒有以任何特定的方式教授或編程玩游戲。相反,它在觀看比分時被賦予了鍵盤的控制權,其目標是最大化得分。玩了兩個小時后,電腦成了游戲的專家。

深度學習社區正在進行一場比賽,訓練計算機在幾乎所有你能想到的游戲中擊敗人類,包括太空侵略者,毀滅戰士,乒乓球和魔獸世界。在大多數這些游戲中,深度學習網絡已經勝過有經驗的玩家。電腦沒有編程玩游戲;他們只是通過玩耍學習。

3.語音生成和識別

Google發布了WaveNet,百度發布了DeepSpeech。兩者都是自動生成語音的深度學習網絡。系統學會自己模仿人類的聲音,并隨著時間的推移而改善。將他們的言論與真實的人物區別開來,這要比想像中難得多。

由牛津大學和GoogleDeepMind科學家LipNet創建的一個深度網絡,在閱讀人們的嘴唇方面達到了93%的成功,普通的人類嘴唇閱讀器只有52%的成功率。華盛頓大學的一個小組使用唇形同步來創建一個系統,將合成音頻設置為現有視頻

4.藝術和風格的模仿

神經網絡可以研究特定藝術品的筆畫,顏色和陰影中的圖案。在此基礎上,可以將原作的風格轉化為新的形象。

DeepArt.io就是一個例子,該公司創建的應用程序使用深度學習來學習數百種不同的風格,可以將其應用于照片。藝術家和程序員GeneKogan還根據從埃及象形文字中學到的算法樣式,應用風格轉換來修改蒙娜麗莎。

5.預測

斯坦福大學研究人員蒂姆尼特·格布魯拿走了五千萬張谷歌街景圖片,探索一個深度學習網絡可以做些什么。計算機學會了本地化和識別汽車。它檢測到超過2200萬輛汽車,包括他們的制造商,型號,車型和年份。這個系統應用的一個例子包括了選民路線開始和停止的跡象。根據分析,“如果在15分鐘車程內遇到的轎車數量超過皮卡車數量,那么在下次總統選舉期間,這個城市很可能會投票給民主黨人(88%的概率)。

來自GoogleSunroof的機器的另一個例子比人類提供更準確的預測。該技術使用來自GoogleEarth的航空照片創建屋頂的3D模型,將其與周圍的樹木和陰影區分開來。然后使用太陽的軌跡來預測太陽能電池板根據位置規格可以從屋頂產生多少能量。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4813

    瀏覽量

    103399
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    BP神經網絡與卷積神經網絡的比較

    BP神經網絡與卷積神經網絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經網絡 : BP神經網絡是一種多層的前饋神經網絡
    的頭像 發表于 02-12 15:53 ?632次閱讀

    人工神經網絡的原理和多種神經網絡架構方法

    在上一篇文章中,我們介紹了傳統機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經網絡的原理和多種神經網絡架構方法,供各位老師選擇。 01 人工神經網絡 ? 人工神經網絡模型之所
    的頭像 發表于 01-09 10:24 ?1164次閱讀
    人工<b class='flag-5'>神經網絡</b>的原理和多種<b class='flag-5'>神經網絡</b>架構方法

    卷積神經網絡與傳統神經網絡的比較

    在深度學習領域神經網絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經網絡(CNNs)和傳統神經網絡是兩種常見的模型。 1. 結構差異 1.1 傳統
    的頭像 發表于 11-15 14:53 ?1821次閱讀

    RNN模型與傳統神經網絡的區別

    神經網絡是機器學習領域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術的發展,神經網絡的類型也在不斷增加,其中循環神經網絡(RNN)和傳統
    的頭像 發表于 11-15 09:42 ?1105次閱讀

    matlab 神經網絡 數學建模數值分析

    matlab神經網絡 數學建模數值分析 精通的可以討論下
    發表于 09-18 15:14

    殘差網絡是深度神經網絡

    殘差網絡(Residual Network,通常簡稱為ResNet) 是深度神經網絡的一種 ,其獨特的結構設計在解決深層網絡訓練中的梯度消失和梯度爆炸問題上取得了顯著的突破,并因此成為圖像處理、語音識別等多個
    的頭像 發表于 07-11 18:13 ?1595次閱讀

    卷積神經網絡有何用途 卷積神經網絡通常運用在哪里

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理、生物信息學等領域。本文將介紹卷積神經網絡的用途
    的頭像 發表于 07-11 14:43 ?4336次閱讀

    全卷積神經網絡的工作原理和應用

    全卷積神經網絡(FCN)是深度學習領域中的一種特殊類型的神經網絡結構,尤其在計算機視覺領域表現出色。它通過全局平均池化或轉置卷積處理任意尺寸的輸入,特別適用于像素級別的任務,如圖像分割
    的頭像 發表于 07-11 11:50 ?1841次閱讀

    怎么對神經網絡重新訓練

    重新訓練神經網絡是一個復雜的過程,涉及到多個步驟和考慮因素。 引言 神經網絡是一種強大的機器學習模型,廣泛應用于圖像識別、自然語言處理、語音識別等領域。然而,隨著時間的推移,數據分布可能會
    的頭像 發表于 07-11 10:25 ?847次閱讀

    BP神經網絡和卷積神經網絡的關系

    BP神經網絡(Backpropagation Neural Network)和卷積神經網絡(Convolutional Neural Network,簡稱CNN)是兩種在人工智能和機器學習領域
    的頭像 發表于 07-10 15:24 ?2433次閱讀

    BP神經網絡和人工神經網絡的區別

    BP神經網絡和人工神經網絡(Artificial Neural Networks,簡稱ANNs)之間的關系與區別,是神經網絡領域中一個基礎且重要的話題。本文將從定義、結構、算法、應用及
    的頭像 發表于 07-10 15:20 ?2247次閱讀

    全連接前饋神經網絡與前饋神經網絡的比較

    隨著人工智能技術的飛速發展,神經網絡作為其核心組成部分,在各個領域展現出了強大的應用潛力和價值。在眾多神經網絡類型中,全連接前饋神經網絡(Fully Connected Feedfor
    的頭像 發表于 07-09 10:31 ?2.1w次閱讀

    神經網絡控制的優勢與挑戰

    神經網絡控制是一種利用人工神經網絡對復雜系統進行建模和控制的方法。它在許多領域得到了廣泛的應用,如工業自動化、機器人技術、航空航天、生物醫學工程等。 一、引言 1.1 神經網絡的基本概
    的頭像 發表于 07-09 09:47 ?1190次閱讀

    人工神經網絡的案例分析

    人工神經網絡(Artificial Neural Network, ANN)作為深度學習領域的重要分支,自20世紀80年代以來一直是人工智能領域的研究熱點。其靈感來源于生物神經網絡,通
    的頭像 發表于 07-08 18:20 ?1533次閱讀

    前饋神經網絡的工作原理和應用

    前饋神經網絡(Feedforward Neural Network, FNN),作為最基本且應用廣泛的一種人工神經網絡模型,其工作原理和結構對于理解深度學習及人工智能領域至關重要。本文將從前饋
    的頭像 發表于 07-08 11:28 ?3065次閱讀
    主站蜘蛛池模板: 临湘市| 卓尼县| 万安县| 达拉特旗| 乐至县| 崇明县| 东安县| 普安县| 阜南县| 盐山县| 连云港市| 淮阳县| 黔西| 萝北县| 桂平市| 漾濞| 满城县| 桐乡市| 三都| 仙桃市| 尚义县| 喀喇沁旗| 土默特左旗| 临高县| 富源县| 四子王旗| 肃宁县| 静乐县| 金山区| 贺兰县| 三都| 澄迈县| 额敏县| 宁河县| 门源| 澎湖县| 武安市| 横峰县| 鄂托克前旗| 会宁县| 万山特区|