女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

比CNN表現(xiàn)更好,CV領(lǐng)域全新卷積操作OctConv厲害在哪里?

電子工程師 ? 來源:YXQ ? 2019-04-24 11:35 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

CNN卷積神經(jīng)網(wǎng)絡(luò)問世以來,在計算機視覺領(lǐng)域備受青睞,與傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)相比,其參數(shù)共享性和平移不變性,使得對于圖像的處理十分友好,然而,近日由Facebook AI、新家坡國立大學(xué)、360人工智能研究院的研究人員提出的一種新的卷積操作OctConv使得在圖像處理性能方面得到了重大突破與提升,OctConv和CNN中的卷積有什么不同呢?

論文下載地址:

https://arxiv.org/pdf/1904.05049.pdf

CNN網(wǎng)絡(luò)中的卷積層主要用來提取圖像特征,如下圖所示,利用卷積核(也稱濾波器)對輸入圖像的每個像素進行卷積操作得到特征圖,由于圖像中相鄰像素的特征相似性,卷積核橫掃每個位置,獨立的存儲自己的特征描述符,忽略空間上的一致性,使得特征圖在空間維度上存在大量的冗余。

圖1 普通卷積操作示意圖

OctConv主要基于于處理多空間頻率的特征映射并減少空間冗余的問題提出的。

原文地址:

https://export.arxiv.org/pdf/1904.05049

下面文摘菌將從論文的四個部分展開對OctConv原理的闡述。

Why?—OctConv之誕生

文章摘要(Abstract)部分指出,在自然圖像中,信息以不同的頻率傳輸,其中高頻率通常以細節(jié)進行編碼,而較低頻率通常以總體結(jié)構(gòu)進行編碼,同理卷積層的輸出可以看做不同頻率的信息混合,在論文中,研究者提出通過頻率對特征融合圖進行分解,并設(shè)計出了一種新的Octave卷積(OctConv)操作,旨在存儲和處理在空間上變化緩慢的較低分辨率的特征圖,從而降低內(nèi)存和計算成本。與現(xiàn)存的多尺度方法不同,OctConv是一種單一、通用、即插即用的卷積單元,可以直接代替普通卷積,而無需調(diào)整網(wǎng)絡(luò)結(jié)構(gòu)。

OctConv與那些用于構(gòu)建更優(yōu)拓撲或者減少分組或深度卷積中信道冗余的方法是正交和互補的。

實驗表明,通過使用OctConv替代普通卷積,能很好的提高語音和圖像識別任務(wù)中的精度,同時降低內(nèi)存和計算成本,一個配備有OctConv的ResNet-152能夠以僅僅22.2 GFLOP在ImageNet數(shù)據(jù)集上達到82.5%的top-1分類準確率。

What?—初探OctConv

論文Introduction(介紹)部分基于CNN現(xiàn)存的空間維度冗余問題引出了下圖:

圖2 論文思路闡述圖

(a)動機:研究表明,自然圖像可以分解為低空間頻率和高空間頻率兩部分;

(b)卷積層的輸出圖也可以根據(jù)空間頻率進行分解和分組;

(c)所提出的多頻特征表示將平滑變化的低頻映射存儲字低分辨率張量中,以減少空間冗余;

(d)所提出的OctConv直接作用于這個表示。它會更新每個組的信息,并進一步支持組之間的信息交換。

具體解釋為:如圖 2(a) 所示,自然圖像可以分解為描述平穩(wěn)變化結(jié)構(gòu)的低空間頻率分量和描述快速變化的精細細節(jié)的高空間頻率分量。類似地,我們認為卷積層的輸出特征映射也可以分解為不同空間頻率的特征,并提出了一種新的多頻特征表示方法,將高頻和低頻特征映射存儲到不同的組中,如圖 2(b) 所示。因此,通過相鄰位置間的信息共享,可以安全地降低低頻組的空間分辨率,減少空間冗余,如圖 2(c) 所示。

How?—再探OctConv

論文Method(方法)部分:octave feature 減少了空間冗余,比原始表示更加緊湊。然而,由于輸入特征的空間分辨率不同,傳統(tǒng)卷積不能直接對這種表示進行操作。避免這個問題的一種簡單方法是將低頻部分上采樣到原始的空間分辨率,將它與連接起來,然后進行卷積,這將導(dǎo)致額外的計算和內(nèi)存開銷。為了充分利用緊湊的多頻特征表示,我們提出 Octave Convolution,它可以直接在分解張量X={XH,XL}上運行,而不需要任何額外的計算或內(nèi)存開銷。

Octave Convolution的設(shè)計目標是有效地處理相應(yīng)張量中的低頻和高頻分量,同時使得Octave特征表示的高頻分量和低頻分量之間能夠有效通信。設(shè)X,Y為分解輸入和輸出張量,那么輸出的高頻和低頻信號將由下式給出:

其中H→H,L→L表示自身的更新,L→H,H→L表示高頻與低頻分量之間的通信,如圖3所示綠色箭頭表示信息更新,紅色箭頭表示兩個頻率之間的信息交換。

圖3 Octave Convolution示意圖

同理,我們將卷積核分解為高頻和低頻W={WH,WL},WH=WH→H+WL→H;WL=WL→L+WH→L,如圖4所示:

圖3 Octave Convolution kernel示意圖

對于低頻特征所使用的低頻所占比例a的不同,當a=0時(即沒有低頻成分),OctConv就會退化為普通卷積。經(jīng)過實驗評估k×k Octave 卷積核與普通卷積核等價,即二者具有完全相同的參數(shù)量。

To do—Just do it

論文的實驗部分:研究人員驗證了提出的Octave卷積對于2D和3D網(wǎng)絡(luò)的效能和效率,首先展示了ImageNet圖像分類的控制變量研究,然后將其與當前最優(yōu)的方法進行了比較。之后研究人員使用Kinetics-400和Kinetics-600數(shù)據(jù)集,展示了提出的OctConv也適用于3D CNN。

圖4 ImageNet上的控制變量結(jié)果圖

上表為論文中的表8,視頻中的動作識別、控制變量研究結(jié)果統(tǒng)計。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 計算機視覺
    +關(guān)注

    關(guān)注

    9

    文章

    1708

    瀏覽量

    46734
  • cnn
    cnn
    +關(guān)注

    關(guān)注

    3

    文章

    354

    瀏覽量

    22704

原文標題:比CNN表現(xiàn)更好,CV領(lǐng)域全新卷積操作OctConv厲害在哪里?

文章出處:【微信號:BigDataDigest,微信公眾號:大數(shù)據(jù)文摘】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是一類包含卷積計算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Networks,F(xiàn)NN
    的頭像 發(fā)表于 11-15 14:47 ?1753次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    許多種類型,但本文將只關(guān)注卷積神經(jīng)網(wǎng)絡(luò)(CNN),其主要應(yīng)用領(lǐng)域是對輸入數(shù)據(jù)的模式識別和對象分類。CNN是一種用于深度學(xué)習(xí)的 人工神經(jīng)網(wǎng)絡(luò) 。這種網(wǎng)絡(luò)由輸入層、若干
    發(fā)表于 10-24 13:56

    貼片電容與貼片電阻的本質(zhì)差異在哪里

    貼片電容與貼片電阻的本質(zhì)差異在哪里
    的頭像 發(fā)表于 08-27 15:51 ?780次閱讀
    貼片電容與貼片電阻的本質(zhì)差異<b class='flag-5'>在哪里</b>?

    卷積神經(jīng)網(wǎng)絡(luò)共包括哪些層級

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、語音識別、自然語言處理等領(lǐng)域。它以卷積層為核心,通過多層
    的頭像 發(fā)表于 07-11 15:58 ?2804次閱讀

    基于PyTorch的卷積核實例應(yīng)用

    在深度學(xué)習(xí)和計算機視覺領(lǐng)域,卷積操作是一種至關(guān)重要的技術(shù),尤其在圖像處理和特征提取方面發(fā)揮著核心作用。PyTorch作為當前最流行的深度學(xué)習(xí)框架之一,提供了強大的張量操作功能和靈活的A
    的頭像 發(fā)表于 07-11 15:19 ?897次閱讀

    cnn常用的幾個模型有哪些

    CNN卷積神經(jīng)網(wǎng)絡(luò))是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、自然語言處理等領(lǐng)域。以下是一些常用的CNN模型: LeNet-5:LeNet-5是最早的
    的頭像 發(fā)表于 07-11 14:58 ?1884次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)有何用途 卷積神經(jīng)網(wǎng)絡(luò)通常運用在哪里

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理、生物信息學(xué)等領(lǐng)域。本文將介紹卷積
    的頭像 發(fā)表于 07-11 14:43 ?4336次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)通常包括哪幾層

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域CNN的核心特點是能夠自動提
    的頭像 發(fā)表于 07-11 14:41 ?1392次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本概念、原理及特點

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)算法,它在圖像識別、視頻分析、自然語言處理等領(lǐng)域有著廣泛的應(yīng)用。本文將詳細介紹卷積
    的頭像 發(fā)表于 07-11 14:38 ?2420次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)誤差分析

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNNs)作為深度學(xué)習(xí)的一個重要分支,在圖像處理、計算機視覺等領(lǐng)域取得了顯著成就。其強大的特征提取能力和層次化的結(jié)構(gòu)設(shè)計
    的頭像 發(fā)表于 07-11 14:33 ?883次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的壓縮方法

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)作為深度學(xué)習(xí)領(lǐng)域的重要分支,在圖像識別、視頻處理、自然語言處理等多個領(lǐng)域取得了顯著成就。然而,隨著網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-11 11:46 ?754次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)在視頻處理中的應(yīng)用

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)作為深度學(xué)習(xí)的代表算法之一,在計算機視覺領(lǐng)域取得了顯著成就,特別是在視頻處理方面。本文將深入探討卷積
    的頭像 發(fā)表于 07-09 15:53 ?1209次閱讀

    圖像分割與語義分割中的CNN模型綜述

    圖像分割與語義分割是計算機視覺領(lǐng)域的重要任務(wù),旨在將圖像劃分為多個具有特定語義含義的區(qū)域或?qū)ο蟆?b class='flag-5'>卷積神經(jīng)網(wǎng)絡(luò)(CNN)作為深度學(xué)習(xí)的一種核心模型,在圖像分割與語義分割中發(fā)揮著至關(guān)重要的作用。本文將從
    的頭像 發(fā)表于 07-09 11:51 ?2014次閱讀

    CNN與RNN的關(guān)系?

    在深度學(xué)習(xí)的廣闊領(lǐng)域中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)是兩種極為重要且各具特色的神經(jīng)網(wǎng)絡(luò)模型。它們各自在圖像處理、自然語言處理等領(lǐng)域展現(xiàn)出卓越的性能。本文將從概念、原理
    的頭像 發(fā)表于 07-08 16:56 ?1639次閱讀

    CNN在多個領(lǐng)域中的應(yīng)用

    ,通過多層次的非線性變換,能夠捕捉到數(shù)據(jù)中的隱藏特征;而卷積神經(jīng)網(wǎng)絡(luò)(CNN),作為神經(jīng)網(wǎng)絡(luò)的一種特殊形式,更是在圖像識別、視頻處理等領(lǐng)域展現(xiàn)出了卓越的性能。本文旨在深入探究深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)與
    的頭像 發(fā)表于 07-08 10:44 ?2926次閱讀
    主站蜘蛛池模板: 睢宁县| 靖安县| 瑞昌市| 油尖旺区| 来凤县| 杭锦旗| 绿春县| 廊坊市| 塔河县| 抚州市| 饶河县| 崇阳县| 宁乡县| 永顺县| 广东省| 介休市| 涞水县| 土默特左旗| 固镇县| 新乡市| 桓台县| 武平县| 邵武市| 万安县| 东光县| 天峻县| 日喀则市| 酒泉市| 夏河县| 天水市| 乌鲁木齐县| 军事| 申扎县| 古蔺县| 文登市| 敦化市| 屏东市| 米脂县| 达州市| 休宁县| 文山县|