女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

新至強訓練推理增效十倍,英特爾CPU加速AI更上一層樓

英特爾中國 ? 來源:機器之心 ? 2023-01-14 14:17 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

英特爾在自己最擅長的 CPU 上完成了一次 AI 計算的革新。

人工智能技術改變了我們的生活,而說到 AI 背后的算力,人們經(jīng)常會先想到 GPU。從 2019 年英特爾為其第二代至強可擴展處理器增添了內(nèi)置的深度學習加速技術后,原本定位通用計算的 CPU 芯片,也加入了為 AI 加速的行列。

今天,代號為「Sapphire Rapids」的第四代至強可擴展處理器也在中國迎來發(fā)布首秀,除了一系列微架構(gòu)的革新和技術規(guī)格的升級外,新 CPU 對 AI 運算「更上層樓」的支持也格外引人關注,其背后的技術助力,也是英特爾在這代產(chǎn)品中增添的全新內(nèi)置 AI 加速器 —— 英特爾高級矩陣擴展(AMX)技術自然也成為了焦點。

作為焦點,當然要拿出實力來證明自己的價值 —— 在發(fā)布會上,英特爾透露的第四代至強可擴展處理器的基礎算力平均提升值為 53%,而在 AMX 的助推下,其在 PyTorch 上的 AI 實時推理速度,可提升至上一代產(chǎn)品(FP32)的 5.7-10 倍,訓練性能提升最高也能提升到上一代產(chǎn)品的 10 倍…… 這意味著,這款新至強,把業(yè)界頂級 CPU 的性能門檻一下子提高了不少。

新一代英特爾 CPU 為 AI 任務處理找到了新方向。現(xiàn)在,英特爾可以通過新 CPU 和 GPU 實現(xiàn)對各類 AI 任務的加速。為實現(xiàn)這些提升,英特爾引入了一系列內(nèi)置加速單元。

多種加速器加持,

提升 AI 訓練、推理及端到端性能

AI 的熱度,從 AlphaGo 一鳴驚人后,一直就沒有減退。最近一段時間,人們都在談論 ChatGPT 等「大模型」帶來的革命性體驗。由預訓練模型方法推動的 AI 技術正在向跨任務、跨模態(tài)的方向演進,已成為當下 AI 技術發(fā)展的重要趨勢。

然而,大模型雖然帶來了前所未有的 AI 能力,又對算力提出了無窮無盡的需求。芯片制造商和科技公司一直在尋找提升 AI 應用效率的方法。GPU 更多解決的,是訓練效率,是探索 AI 算法邊界的能力,而 CPU,似乎更適合在 AI 應用的規(guī)模化部署和實踐上發(fā)揮重要作用。

自從四五年前開始在 CPU 中內(nèi)置針對 AI 進行加速的專用運算單元或指令集后,英特爾就一直相信,如果想要在更為廣泛的行業(yè)中真正推進 AI 應用的普及,那么就應該充分利用現(xiàn)階段應用和部署最為廣泛的 IT 基礎設施和架構(gòu),也就是要更加充分地利用 CPU 的資源。畢竟使用 GPU 和其他專用加速器的成本以及知識和人才門檻都非常高。相比之下,CPU 內(nèi)置 AI 加速能力,主攻 AI 推理加速,并搭配以更為簡單易用、能夠部署和優(yōu)化難度的軟件工具,會是一條更為行之有效的路徑。

它是這么想,也是這么做的 —— 首先,從 2017 年第一代至強可擴展芯片開始,英特爾就開始利用英特爾高級矢量擴展 512 技術(AVX-512 指令集)的矢量運算能力對 AI 進行加速上的嘗試,到 2018 年英特爾在第二代至強可擴展芯片導入深度學習加速(DL Boost)技術,更是讓至強成為了首款集成 AI 加速有力的主流數(shù)據(jù)中心級 CPU,或者說:CPU 加速 AI 的代名詞。

2020 年通過擴展出 bfloat16 加速功能,面向多路服務器的第三代至強可擴展處理器在推理加速能力之外,又增加了訓練加速能力,已被證明可以幫助業(yè)界大量 AI 工作負載實現(xiàn)更優(yōu)的性能和功耗比。

就在大家認為英特爾在 CPU 加速 AI 的技術創(chuàng)新和投入會止步于此的時候,第四代至強可擴展芯片,又帶來了矩陣化的算力支持 ——AMX。

第四代英特爾至強可擴展處理器。

這種全新內(nèi)置 AI 加速器的出現(xiàn),進一步驗證了「與其增加 CPU 內(nèi)核數(shù)和時鐘頻率,加入和更新專用計算單元對提升 AI 工作負載性能更有效」這一思路。正如前文所述,第四代至強可擴展芯片不僅可借助 AMX 實現(xiàn)相當于上一代芯片(FP32)10 倍的 AI 性能提升,與前兩代產(chǎn)品使用的深度學習加速技術相比,其理論性能(每秒操作量)最高也可以達到其 8 倍之多。

機器學習包含大量的矩陣計算,在主打通用計算的 CPU 上,此類任務會被轉(zhuǎn)換為效率較低的向量計算,而在加入專用的矩陣計算單元后,至強 CPU 的 AI 能力有了巨大的提升。因此,AMX 可以被視為至強 CPU 上的「TensorCore」—— 從原理上看,CPU 上的 AI 加速器實現(xiàn)的目的和 GPU、移動端處理器上的類似。由于 AMX 單元對底層矩陣計算進行加速,理論上它對于所有基于深度學習的 AI 應用都能起到效果。

如果說 AMX 為至強 CPU 帶來的是直觀的推理和訓練加速,那么第四代至強可擴展芯片內(nèi)置的其他幾種加速器,就是為 AI 端到端應用加速帶來的驚喜。

這是因為在真正完整的 AI 應用流水線中,任務往往會從數(shù)據(jù)的處理和準備開始,在這一階段,第四代至強可擴展芯片內(nèi)置的數(shù)據(jù)流加速器(DSA),可讓數(shù)據(jù)存儲與傳輸性能提升到上一代產(chǎn)品的 2 倍,而專門針對數(shù)據(jù)庫和數(shù)據(jù)分析加速的英特爾存內(nèi)分析加速器(IAA),也可將相關應用的性能提升到上一代產(chǎn)品的三倍(RocksDB);數(shù)據(jù)保護與壓縮加速技術(QAT),則能在內(nèi)核用量減少多達 95% 的情況下將一級壓縮吞吐量提升至原來的兩倍。這些技術的使用,也有助于 AI 端到端應用性能的整體躍升。

此外,隨著 AI 應用在更多行業(yè),包括金融、醫(yī)療等數(shù)據(jù)敏感型行業(yè)的落地,人們對于數(shù)據(jù)安全合規(guī)的要求逐漸提高,聯(lián)邦學習等技術逐漸獲得應用。在這一方面,至強可擴展處理器集成的專攻數(shù)據(jù)安全強化的加速器 —— 軟件防護擴展(SGX),也是大有用武之地,它的突出優(yōu)勢就是可以為處理中或運行中的敏感數(shù)據(jù)和應用代碼提供與其他系統(tǒng)組件和軟件隔離的安全飛地,實現(xiàn)更小的信任邊界。

這種技術對于 AI 而言,最核心的價值就是可以讓有多方數(shù)據(jù)交互、協(xié)作的 AI 訓練過程變得更加安全,各方數(shù)據(jù)都可以在其擁有者的本地參與訓練,用于訓練的數(shù)據(jù)和模型會被安全飛地所保護,最終模型可以在這種保護下提升精度和效率,但為其演進做出了關鍵貢獻的數(shù)據(jù)則會一直處于「可用而不可見 」的狀態(tài)下,以確保其中的敏感和隱私信息的安全性。

在這么多內(nèi)置加速器的支持下,可以說,從數(shù)據(jù)預處理,到訓練,再到推理,最后到整個 AI 應用的安全保護層面,第四代至強可擴展處理器都實現(xiàn)了更全面的功能覆蓋和重點增強。與此同時,英特爾還在進一步強化 AI 加速的開箱即用優(yōu)勢:通過與大量第三方進行合作,英特爾共同優(yōu)化了 SAP HANA、Microsoft SQL Server、Oracle、VMware Cloud Foundation、Red Hat OpenShift 等主流應用,很多主流軟件庫和開源機器學習框架,以及大多數(shù)云服務也對這款英特爾架構(gòu)上的新品做好了優(yōu)化,開發(fā)者可以直接使用新硬件開發(fā)和部署 AI 算法。

從開發(fā)者的角度看,使用第四代至強可擴展處理器實現(xiàn)優(yōu)化加速的門檻也確實很低:人們只需使用集成在 TensorFlow 和 PyTorch 中的庫,無需任何額外工作即可激活至強芯片內(nèi)置 AI 加速的能力。此外,只需更改幾行代碼,開發(fā)人員就可以無縫地加速單節(jié)點和多節(jié)點配置中的 Scikit-learn 應用。

全能服務器 CPU

除了有加速器傍身專攻特定應用負載外,第四代至強可擴展處理器在基礎性能上也是可圈可點。

例如,它采用了與英特爾第 12、13 代酷睿同款的 Intel 7 制造工藝(改進版 10nm 制程)和 Golden Cove CPU 架構(gòu),同時首次引入 chiplet 小芯片封裝方式,最多可搭載 60 個核心,改用新的 Socket E LGA4677 封裝接口,集成了 112MB 三級緩存,功耗最高達到 350W。

新一代至強還帶來了對八通道 DDR5-4800 和 PCIe 5.0 的支持,并包含 CXL 1.1 高速互連總線,可選集成最多 64GB HBM2e 內(nèi)存。

上述這些針對 IO 和存儲的新技術的引入,使得第四代至強可擴展處理器具備了能夠打破帶寬瓶頸的 I/O 能力,讓使用者可以充分利用處理器的代際性能提升滿足 AI 平臺等業(yè)務對于通用算力的苛刻需求。

四代至強可擴展處理器平臺特性。

綜合這些基礎芯片架構(gòu)規(guī)模上的升級和革新,以及各種加速器的特定加成效果,第四代至強可擴展處理器的基礎算力相比上一代產(chǎn)品可提升 53%,而其能效,或者說每瓦性能,相比上一代產(chǎn)品也提升了 2.9 倍,這意味著更高的效率,更低的功耗和更優(yōu)的投資回報率。

英特爾表示,新一代 CPU 還可以催生出前所未有的應用,幫助 AI 算法直接利用非結(jié)構(gòu)化數(shù)據(jù)進行實時分析。在金融、醫(yī)療、零售等行業(yè)中,人們可以利用機器學習作出更加精確的投資決策,降低術后并發(fā)癥風險,更好地理解消費者的需求。

構(gòu)建下一代異構(gòu) AI 算力

在不斷尋求創(chuàng)新業(yè)務的過程中,人們對于算力的需求相比以往正變得更加迫切。而且這種算力也必須要兼顧到通用和專用的不同方向。因此英特爾架構(gòu)也正在就此有針對性的演進,這在本次第四代至強可擴展處理器的發(fā)布會上就可見一斑 —— 對科學計算和 AI 加速有更苛刻要求的用戶,也等來了英特爾數(shù)據(jù)中心 GPU 旗艦產(chǎn)品 ——MAX 系列的發(fā)布。

其實在過去幾年里,英特爾已經(jīng)陸續(xù)推出了一些異構(gòu)產(chǎn)品,例如 2022 年英特爾旗下的 Habana Labs 正式發(fā)布了用于深度學習訓練的 Gaudi2,隨之被應用在 AWS 上。同年夏天主打視覺云應用的數(shù)據(jù)中心 GPU Flex 系列也在視頻處理、云游戲和視覺 AI 推理應用中初露頭腳,但很多「發(fā)燒級」用戶最期待的還是數(shù)據(jù)中心 GPU Max 系列,今天,這款采用了突破性設計,采用多芯片集合的方式,混合 5 種工藝,晶體管數(shù)量超過千億的 「怪獸」,終于來了!

GPU 產(chǎn)品線的完善,也使得英特爾成為業(yè)界唯一一家能提供橫跨 CPU、GPU、ASICFPGA 四大類型芯片計算解決方案的供應商,可為智能數(shù)據(jù)中心提供基于任何場景、需求的產(chǎn)品組合。

強大的硬件之外,英特爾還利用 oneAPI 軟件體系實現(xiàn)了對異構(gòu)硬件的統(tǒng)一編程和管理,構(gòu)建了能夠靈活調(diào)配、無縫協(xié)作和低門檻的 AI 開發(fā)工具。通過 XPU 硬件、oneAPI 軟件及 UCIe 開放標準的布局,英特爾已經(jīng)打造出了軟硬一體化的完整生態(tài)。

隨著新一代芯片發(fā)布,我們或許將看到未來 AI 計算的形態(tài)發(fā)生重要轉(zhuǎn)變。

審核編輯:湯梓紅

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 處理器
    +關注

    關注

    68

    文章

    19863

    瀏覽量

    234408
  • 英特爾
    +關注

    關注

    61

    文章

    10190

    瀏覽量

    174383
  • cpu
    cpu
    +關注

    關注

    68

    文章

    11066

    瀏覽量

    216624
  • gpu
    gpu
    +關注

    關注

    28

    文章

    4930

    瀏覽量

    130994
  • AI
    AI
    +關注

    關注

    88

    文章

    34872

    瀏覽量

    277643

原文標題:新至強訓練推理增效十倍,英特爾CPU加速AI更上一層樓

文章出處:【微信號:英特爾中國,微信公眾號:英特爾中國】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    主控CPU全能選手,英特爾至強6助力AI系統(tǒng)高效運轉(zhuǎn)

    2025年3月,英偉達發(fā)布了DGX B300 AI加速計算平臺。2025年5月,英特爾發(fā)布了三款全新英特爾至強6性能核處理器,其中
    的頭像 發(fā)表于 06-27 11:44 ?139次閱讀
    主控<b class='flag-5'>CPU</b>全能選手,<b class='flag-5'>英特爾</b><b class='flag-5'>至強</b>6助力<b class='flag-5'>AI</b>系統(tǒng)高效運轉(zhuǎn)

    術業(yè)有專攻——AI系統(tǒng)主控CPU英特爾至強6新品處理器淺析

    至強6與NVIDIA GPU?協(xié)同的硬件基礎 在 AI 異構(gòu)計算架構(gòu)中,英特爾至強6處理器作為主控C
    的頭像 發(fā)表于 06-19 16:37 ?200次閱讀
    術業(yè)有專攻——<b class='flag-5'>AI</b>系統(tǒng)主控<b class='flag-5'>CPU</b><b class='flag-5'>英特爾</b><b class='flag-5'>至強</b>6新品處理器淺析

    直擊Computex2025:英特爾重磅發(fā)布新代GPU,圖形和AI性能躍升3.4

    5月19日,在Computex 2025上,英特爾發(fā)布了最新全新圖形處理器(GPU)和AI加速器產(chǎn)品系列。包括全新英特爾銳炫? Pro B系列GPU——
    的頭像 發(fā)表于 05-20 12:27 ?4355次閱讀
    直擊Computex2025:<b class='flag-5'>英特爾</b>重磅發(fā)布新<b class='flag-5'>一</b>代GPU,圖形和<b class='flag-5'>AI</b>性能躍升3.4<b class='flag-5'>倍</b>

    1.9性能提升!英特爾至強6在MLPerf基準測試中表現(xiàn)卓越

    關鍵項目中,性能表現(xiàn)卓越。測試結(jié)果顯示,相較于上代產(chǎn)品,該處理器的AI性能實現(xiàn)了高達1.9的顯著提升,這也充分顯示了至強6處理器作為現(xiàn)代AI
    的頭像 發(fā)表于 04-07 10:58 ?245次閱讀

    英特爾至強6:如何煉就數(shù)據(jù)中心“全能型選手”

    計算密集型工作負載而設計,新發(fā)布的至強6700P和至強6500P不僅在AI推理、單核性能等關鍵領域展現(xiàn)出家族“優(yōu)等生”風范,還面向多路服務器應用場景,提供了高度靈活的適配方案。 ? 作
    的頭像 發(fā)表于 03-13 14:57 ?314次閱讀
    <b class='flag-5'>英特爾</b><b class='flag-5'>至強</b>6:如何煉就數(shù)據(jù)中心“全能型選手”

    英特爾至強6再推新品!打造最強AI“機頭引擎”

    的產(chǎn)品矩陣,很好地滿足市場的多樣化需求;另方面,憑借卓越的 AI 性能提升,英特爾為數(shù)據(jù)中心提供了性能強勁的機頭節(jié)點 CPU,助力企業(yè)在數(shù)字時代的浪潮中穩(wěn)步前行。 事實上,去年9月,
    的頭像 發(fā)表于 03-13 14:57 ?314次閱讀

    英特爾展示基于至強6處理器的基礎網(wǎng)絡設施

    ? 集成AI功能的英特爾至強6系統(tǒng)級芯片,與前幾代產(chǎn)品相比,可帶來高達2.4的無線接入網(wǎng)(RAN)容量提升1,和70%的每瓦性能提升2; 集成的人工智能
    的頭像 發(fā)表于 03-08 09:24 ?521次閱讀

    英特爾?獨立顯卡與OpenVINO?工具套件結(jié)合使用時,無法運行推理怎么解決?

    使用英特爾?獨立顯卡與OpenVINO?工具套件時無法運行推理
    發(fā)表于 03-05 06:56

    MWC 2025:英特爾展示基于至強6處理器的基礎網(wǎng)絡設施

    新聞亮點 集成AI功能的英特爾至強6系統(tǒng)級芯片,與前幾代產(chǎn)品相比,可帶來高達2.4的無線接入網(wǎng)(RAN)容量提升1,和70%的每瓦性能提升2; 集成的人工智能
    發(fā)表于 03-03 15:52 ?231次閱讀
    MWC 2025:<b class='flag-5'>英特爾</b>展示基于<b class='flag-5'>至強</b>6處理器的基礎網(wǎng)絡設施

    全新英特爾至強6處理器來襲,現(xiàn)代數(shù)據(jù)中心的性能與能效平衡“大師”

    英特爾步豐富至強6處理器產(chǎn)品組合,為行業(yè)提供多款滿足廣泛工作負載的CPU選擇。 新聞亮點 ·?英特爾推出全新
    的頭像 發(fā)表于 02-25 17:39 ?379次閱讀

    使用英特爾AI PC為YOLO模型訓練加速

    之后,情況有了新的變化,PyTorch2.5正式開始支持英特爾顯卡,也就是說,此后我們能夠借助英特爾 銳炫 顯卡來進行模型訓練了。
    的頭像 發(fā)表于 12-09 16:14 ?1549次閱讀
    使用<b class='flag-5'>英特爾</b><b class='flag-5'>AI</b> PC為YOLO模型<b class='flag-5'>訓練</b><b class='flag-5'>加速</b>

    英特爾發(fā)布全新企業(yè)AI體化方案

    近日,英特爾正式推出了全新的企業(yè)AI體化方案。該方案以英特爾至強處理器和英特爾Gaudi 2D
    的頭像 發(fā)表于 12-03 11:20 ?566次閱讀

    英特爾至強品牌新戰(zhàn)略發(fā)布

    品牌是企業(yè)使命和發(fā)展的象征,也承載著產(chǎn)品特質(zhì)和市場認可。在英特爾GTC科技體驗中心的英特爾 至強 6 能效核處理器發(fā)布會上,英特爾公司全球副總裁兼首席市場營銷官Brett Hannat
    的頭像 發(fā)表于 10-12 10:13 ?837次閱讀

    開箱即用,AISBench測試展示英特爾至強處理器的卓越推理性能

    。 中國電子技術標準化研究院賽西實驗室依據(jù)國家標準《人工智能服務器系統(tǒng)性能測試規(guī)范》(征求意見稿)相關要求,使用AISBench?2.0測試工具,完成了第五代英特爾至強可擴展處理器的AI大模型
    的頭像 發(fā)表于 09-06 15:33 ?747次閱讀
    開箱即用,AISBench測試展示<b class='flag-5'>英特爾</b><b class='flag-5'>至強</b>處理器的卓越<b class='flag-5'>推理</b>性能

    巧了不是,原來你也不知道啥是去耦電容的“濾波半徑”啊!

    電源設計中的網(wǎng)紅用語:電容去耦半徑,大多數(shù)人都聽過,但能講出來原理的人估計不多;看完這篇文章,讓你們理論知識和實際設計更上一層樓
    的頭像 發(fā)表于 08-19 14:54 ?813次閱讀
    巧了不是,原來你也不知道啥是去耦電容的“濾波半徑”啊!
    主站蜘蛛池模板: 徐州市| 尼木县| 黎城县| 启东市| 肥乡县| 白沙| 蕲春县| 满洲里市| 永清县| 冕宁县| 华池县| 塔河县| 蕲春县| 唐河县| 类乌齐县| 金寨县| 南雄市| 丰镇市| 建湖县| 昌宁县| 兴义市| 新绛县| 龙川县| 永仁县| 手游| 成武县| 北碚区| 沐川县| 专栏| 义乌市| 阳新县| 贵港市| 洪湖市| 涡阳县| 奈曼旗| 阳原县| 盘山县| 昌平区| 谢通门县| 那坡县| 武夷山市|