女人荫蒂被添全过程13种图片,亚洲+欧美+在线,欧洲精品无码一区二区三区 ,在厨房拨开内裤进入毛片

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

存儲(chǔ)系統(tǒng)如何支持大模型生成式AI

浪潮存儲(chǔ) ? 來源:未知 ? 2023-07-28 18:15 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

2019年初,卷積神經(jīng)網(wǎng)絡(luò)和深度神經(jīng)網(wǎng)絡(luò)蓬勃發(fā)展,其主要目的是分類識(shí)別。那時(shí)利用AI生成一些藝術(shù)作品已經(jīng)初見雛形,但是非常不成熟,基本上都是僅供娛樂,比如下圖,處于天馬行空的早期夢境階段。曾經(jīng)至少有兩部科幻電影描述過(比如《機(jī)械公敵》,《Finch》),也許做夢對(duì)于一個(gè)機(jī)器人來講,是一種超級(jí)進(jìn)化的開端。

生成式AI,AI2.0

時(shí)過境遷。短短幾年內(nèi),新的不同于傳統(tǒng)分類器的模型Transformer,讓AI再一次革新。以往的RNN在自然語言處理訓(xùn)練方面的并行度不是很好,需要太多通信,處理長句子時(shí)效率比較低。而Transformer模型從新的維度上解決了這個(gè)問題,高并行度讓GPU訓(xùn)練效率大幅提升。這個(gè)過程,感覺像極了當(dāng)年分布式系統(tǒng)興起的時(shí)候,大家也是拿著幾篇經(jīng)典論文翻來覆去的研讀,然后開始用開源軟件,最后逐漸發(fā)展出自己的技術(shù)。

當(dāng)AI突破了人類語言這道關(guān)卡,后續(xù)就有點(diǎn)一馬平川的感覺了。因?yàn)槿祟愔R(shí)目前主要儲(chǔ)存在各種語言文本當(dāng)中。再結(jié)合對(duì)圖片、聲音等各種信息的數(shù)字化映射和分析,讓AI能夠運(yùn)行于多模態(tài)模式下,能夠更好的理解字里行間的信息,更精細(xì)化的生成對(duì)應(yīng)的內(nèi)容,比如下圖,已經(jīng)屬于從懵懵懂懂的夢境,走到了現(xiàn)實(shí)。

多模態(tài)生成式AI(AI Generated Content,AIGC)是指通過生成和分析多種模態(tài)的數(shù)據(jù),如文本、圖像、音頻、視頻等,以實(shí)現(xiàn)更加豐富和精準(zhǔn)的智能應(yīng)用。與傳統(tǒng)機(jī)器學(xué)習(xí)方法相比,多模態(tài)生成式AI能夠充分利用多種數(shù)據(jù)之間的關(guān)聯(lián)性,提高模型的泛化能力和魯棒性。生產(chǎn)式AI是人工智能從1.0時(shí)代進(jìn)入2.0時(shí)代的重要標(biāo)志,其具備強(qiáng)大的認(rèn)知智能,在搜索引擎、藝術(shù)創(chuàng)作、影音游戲、文本生成、語音生成、圖片生成、視頻生成、代碼生成、虛擬人生成以及金融、教育、醫(yī)療、工業(yè)等領(lǐng)域有著廣闊的應(yīng)用前景。

Gartner預(yù)測,到2023年將有20%的內(nèi)容被AIGC所創(chuàng)建;到2025 年人工智能生成數(shù)據(jù)占比將達(dá)到10%。據(jù)分析師預(yù)測,到2032年,生成式人工智能市場規(guī)模將達(dá)到2,000億美元,占據(jù)人工智能支出總額的約20%,顯著高出當(dāng)前的5%。換言之,未來十年市場規(guī)??赡苊績赡昃蜁?huì)翻一番。

生成式AI的背后是基于行業(yè)上下游對(duì)數(shù)據(jù)進(jìn)行采集、標(biāo)注、訓(xùn)練、推理、歸檔,其特征是數(shù)據(jù)量大、多元數(shù)據(jù)類型復(fù)雜、服務(wù)協(xié)議多樣、性能要求苛刻、要求服務(wù)持續(xù)在線。由于多模態(tài)數(shù)據(jù)具有復(fù)雜性和多樣性,因此多模態(tài)生成式AI需要具備以下特點(diǎn):

跨模態(tài)數(shù)據(jù)融合:能夠?qū)⒉煌B(tài)的數(shù)據(jù)進(jìn)行有效的融合,以提取更豐富的信息。

跨語言理解:能夠理解不同語言之間的語義差異,提高跨語言應(yīng)用的準(zhǔn)確性。

上下文感知:能夠根據(jù)上下文信息進(jìn)行智能推斷和預(yù)測,提高應(yīng)用的場景適應(yīng)能力。

知識(shí)表示:能夠?qū)⒅R(shí)和信息進(jìn)行有效的表示,以支持更高級(jí)別的認(rèn)知和決策。

革新帶來的新挑戰(zhàn)

現(xiàn)有存儲(chǔ)系統(tǒng)還能不能打?

多模態(tài)生成式AI系統(tǒng)本身是一個(gè)大規(guī)模集群,無論是集中式存儲(chǔ)還是本地直連存儲(chǔ),都早已無法滿足該系統(tǒng)對(duì)存儲(chǔ)性能和容量的基本需求。另外,以機(jī)械硬盤構(gòu)建的任何存儲(chǔ)系統(tǒng),也根本無法承擔(dān)生成式AI對(duì)存儲(chǔ)系統(tǒng)帶寬和時(shí)延的要求??偟膩碇v,生成式AI在存儲(chǔ)方面所面臨的挑戰(zhàn)如下:

大型數(shù)據(jù)集:隨著數(shù)據(jù)和模型規(guī)模的增長,獨(dú)立存儲(chǔ)無法滿足應(yīng)用需求。因此,解決這些問題的分布式存儲(chǔ)解決方案勢在必行。

歷史數(shù)據(jù)的完整歸檔:在某些場景下,AI集群每天都會(huì)產(chǎn)生大量新的數(shù)據(jù)集,必須將其歸檔為歷史數(shù)據(jù)。這在自動(dòng)駕駛領(lǐng)域尤為重要,道路測試車輛收集的數(shù)據(jù)(例如雷達(dá)和攝像頭數(shù)據(jù))對(duì)于公司來說是非常有價(jià)值的資產(chǎn)。在這些情況下,獨(dú)立存儲(chǔ)被證明是不夠的,因此分布式存儲(chǔ)成為必要的考慮因素。

小文件和非結(jié)構(gòu)化數(shù)據(jù)過多:傳統(tǒng)分布式文件系統(tǒng)難以管理大量小文件,導(dǎo)致元數(shù)據(jù)存儲(chǔ)負(fù)擔(dān)過重。這對(duì)于視覺模型來說尤其成問題。為了解決這個(gè)問題,需要一個(gè)針對(duì)小文件存儲(chǔ)進(jìn)行優(yōu)化的分布式存儲(chǔ)系統(tǒng)。這樣既保證了上層訓(xùn)練任務(wù)的高效進(jìn)行,又保證了海量小文件的輕松管理。

云訓(xùn)練數(shù)據(jù)I/O效率低:云模型訓(xùn)練往往采用對(duì)象存儲(chǔ)作為存儲(chǔ)計(jì)算分離架構(gòu)的底層存儲(chǔ)。然而,對(duì)象存儲(chǔ)較差的讀寫性能可能會(huì)導(dǎo)致訓(xùn)練過程中出現(xiàn)嚴(yán)重的瓶頸。

異構(gòu)數(shù)據(jù)的融合:生成式AI訓(xùn)練模型的數(shù)據(jù)呈現(xiàn)來源多、格式多的多源異構(gòu)現(xiàn)狀,傳統(tǒng)存儲(chǔ)面向單一數(shù)據(jù)類型設(shè)計(jì),需要以搬移數(shù)據(jù)的方式實(shí)現(xiàn)多協(xié)議訪問,存儲(chǔ)成為應(yīng)用平臺(tái)的關(guān)鍵瓶頸。

持續(xù)的低延遲與高帶寬:模型訓(xùn)練過程中,頻繁的從數(shù)據(jù)集取Token,每個(gè)Token一般4字節(jié),實(shí)時(shí)高并發(fā)小IO性能需要極低的延遲;存儲(chǔ)模型Checkpoint時(shí),為Checkpoint數(shù)據(jù)可快速寫入,需要高帶寬。

EB級(jí)大容量存儲(chǔ)需求:越多的數(shù)據(jù)投喂結(jié)果越精準(zhǔn)的工作原理,決定了大模型訓(xùn)練存在深度學(xué)習(xí)網(wǎng)絡(luò)層數(shù)多、連接多、參數(shù)和數(shù)據(jù)集種類復(fù)雜、數(shù)據(jù)量大的特征,隨著模型參數(shù)和數(shù)據(jù)量的快速增長,對(duì)于存儲(chǔ)的大容量和擴(kuò)展需求也迫在眉睫。

數(shù)據(jù)存儲(chǔ)產(chǎn)業(yè)需要進(jìn)行全方位的技術(shù)升級(jí),通過在多源異構(gòu)融合、數(shù)據(jù)高速傳輸、海量數(shù)據(jù)管理等方面持續(xù)創(chuàng)新,打造專業(yè)的生成式AI存儲(chǔ)產(chǎn)品與解決方案。

塊,文件,對(duì)象

哪種存儲(chǔ)方式最好?

塊存儲(chǔ)

傳統(tǒng)觀點(diǎn)認(rèn)為,低延遲高帶寬場景,使用塊存儲(chǔ)是最佳方案。然而,塊存儲(chǔ)在可擴(kuò)展性方面卻不能令人滿意。AI集群必須在數(shù)據(jù)量、數(shù)據(jù)類型、決策速度,當(dāng)然還有預(yù)算方面進(jìn)行平衡。AI訓(xùn)練環(huán)境對(duì)實(shí)時(shí)運(yùn)行的基于網(wǎng)絡(luò)的推薦引擎提出了不同的要求。塊存儲(chǔ)傳統(tǒng)上非常適合高吞吐量和高I/O工作負(fù)載,其中低延遲非常重要,然而,隨著現(xiàn)代數(shù)據(jù)分析工作負(fù)載(包括人工智能、機(jī)器學(xué)習(xí)甚至數(shù)據(jù)湖)的出現(xiàn),人們發(fā)現(xiàn)傳統(tǒng)的基于塊的平臺(tái)缺乏滿足這些平臺(tái)計(jì)算方面所產(chǎn)生的橫向擴(kuò)展需求的能力。因此,必須采用基于文件和對(duì)象的方法來支持這些現(xiàn)代工作負(fù)載。

文件和對(duì)象

因此,系統(tǒng)架構(gòu)師更傾向于基于文件或?qū)ο蟮?AI 和 ML 存儲(chǔ)。對(duì)象存儲(chǔ)在構(gòu)建時(shí)考慮到了 PB 級(jí)大容量,并且是按規(guī)模構(gòu)建的,還支持物聯(lián)網(wǎng) (IoT) 等應(yīng)用。對(duì)象存儲(chǔ)在性能方面落后于塊存儲(chǔ)系統(tǒng),盡管隨著更新的高性能對(duì)象技術(shù)的出現(xiàn),差距正在縮小。另外一個(gè)需要考慮的因素是,AI應(yīng)用程序支持的存儲(chǔ)訪問接口各不相同,并非所有人工智能、機(jī)器學(xué)習(xí)或分析工具都支持 AWS 的 S3 接口(對(duì)象的事實(shí)標(biāo)準(zhǔn))。

云存儲(chǔ)

云存儲(chǔ)主要是基于對(duì)象的,但為人工智能和機(jī)器學(xué)習(xí)項(xiàng)目提供了其他優(yōu)勢。其中最主要的是靈活性和較低的前期成本。云存儲(chǔ)的主要缺點(diǎn)是延遲和潛在的數(shù)據(jù)傳輸成本。云存儲(chǔ)對(duì)于基于云的人工智能和機(jī)器學(xué)習(xí)系統(tǒng)來說是一個(gè)不錯(cuò)的選擇,對(duì)于長期數(shù)據(jù)歸檔來說還是劃算的。

綜上,傳統(tǒng)觀點(diǎn)認(rèn)為,沒有單一選項(xiàng)可以滿足人工智能、機(jī)器學(xué)習(xí)和分析的所有存儲(chǔ)需求。然而這個(gè)觀點(diǎn)在浪潮信息AS13000這個(gè)老牌分布式存儲(chǔ)系統(tǒng)面前就顯得有點(diǎn)過于武斷了。

浪潮信息生成式AI存儲(chǔ)解決方案

浪潮信息生成式AI存儲(chǔ)解決方案用一套AS13000融合存儲(chǔ)支撐生成式AI的全階段應(yīng)用,提供全閃、混閃、帶庫、光盤四種介質(zhì),支持文件、對(duì)象、大數(shù)據(jù)、視頻、塊協(xié)議,可滿足大容量、多協(xié)議共享,百萬以上IOPS,100GB以上帶寬,冷數(shù)據(jù)的長期保存和歸檔。結(jié)合AIGC數(shù)據(jù)處理的五個(gè)階段:數(shù)據(jù)采集、數(shù)據(jù)準(zhǔn)備、數(shù)據(jù)訓(xùn)練、數(shù)據(jù)推理和數(shù)據(jù)歸檔,由同一套存儲(chǔ)提供端到端的數(shù)據(jù)流支持流程,滿足面向文本、音頻、圖像、視頻、代碼以及多模態(tài)和全模態(tài)的模型需求。

3221a81c-2d2f-11ee-815d-dac502259ad0.png

浪潮信息生成式AI存儲(chǔ)解決方案擁有極致融合、極致性能、極致節(jié)能,和熱溫冷冰四級(jí)全生命周期存儲(chǔ)管理四大特點(diǎn),助力AIGC突破海量數(shù)據(jù)存力瓶頸,加速釋放數(shù)據(jù)的AI價(jià)值:

極致融合。為了應(yīng)對(duì)不同模態(tài)的多樣性需求,浪潮信息提出協(xié)議融合設(shè)計(jì)理念,一個(gè)集群內(nèi)支持多個(gè)存儲(chǔ)池,一個(gè)存儲(chǔ)池內(nèi)支持文本、圖片、音頻、視頻等多種類型數(shù)據(jù)存儲(chǔ),一份數(shù)據(jù)又可以被前端不同業(yè)務(wù)場景以文件、對(duì)象、大數(shù)據(jù)以及視頻的存儲(chǔ)方式進(jìn)行并行訪問。用一套存儲(chǔ)實(shí)現(xiàn)多模態(tài)場景應(yīng)用,應(yīng)用間數(shù)據(jù)實(shí)現(xiàn)實(shí)時(shí)共享,同時(shí)節(jié)省了大量的存儲(chǔ)空間。

極致性能。AIGC場景數(shù)據(jù)類型多樣化,文件大小不一數(shù)量多,且讀寫頻繁,對(duì)存儲(chǔ)系統(tǒng)的100GB級(jí)帶寬、100萬級(jí)IOPS需求成了常態(tài)。浪潮信息在軟件方面,通過數(shù)控分離架構(gòu)減少東西向數(shù)據(jù)量的轉(zhuǎn)發(fā),通過GDS、RMDA技術(shù)縮短I/O路徑,通過SPDK、緩存零拷貝技術(shù)減少I/O路徑上的數(shù)據(jù)拷貝,以及基于自研NVMe SSD開發(fā)的盤控協(xié)同技術(shù),減少I/O訪問SSD盤的次數(shù),使存儲(chǔ)性能得到進(jìn)一步釋放。在硬件方面,優(yōu)化IO路徑通道,均衡IO路徑,最大化發(fā)揮硬件性能,全閃單節(jié)點(diǎn)帶寬超過50GB/s,IOPS超過50萬;創(chuàng)新性的引入雙控全閃節(jié)點(diǎn),帶寬超過100GB/s,IOPS超過100萬,真正使系統(tǒng)達(dá)到了TB級(jí)帶寬、千萬級(jí)IOPS、EB級(jí)帶寬。

極致節(jié)能。浪潮信息最新發(fā)布的G7硬件平臺(tái),存儲(chǔ)專用的液冷服務(wù)器涵蓋性能型和容量型,且均采用模塊化冷板組件設(shè)計(jì)模式。在系統(tǒng)方案層面,浪潮信息具有風(fēng)液式,液液式等完善的端到端解決方案,能夠?yàn)橛脩羧轿淮蛟煲豪鋽?shù)據(jù)中心交鑰匙工程,并且完成了業(yè)界首次液冷整機(jī)柜批量交付,實(shí)現(xiàn)PUE<1.1。

端到端的全生命周期管理。浪潮生成式AI存儲(chǔ)方案采用閃存、磁盤、磁帶、光盤四種介質(zhì)提供熱溫冷冰四種存儲(chǔ)資源,且實(shí)現(xiàn)了資源的互通和數(shù)據(jù)全生命周期的管理。基于數(shù)據(jù)的熱度識(shí)別,自動(dòng)釋放在線存儲(chǔ)空間,可以將海量數(shù)據(jù)自動(dòng)歸檔到光盤庫,降低長期存儲(chǔ)成本;實(shí)現(xiàn)冷數(shù)據(jù)的分鐘級(jí)快速回調(diào),滿足0~4級(jí)應(yīng)用的存儲(chǔ)需求。四種介質(zhì)、四類存儲(chǔ)節(jié)點(diǎn),提供熱溫冷冰自動(dòng)流轉(zhuǎn),滿足各類應(yīng)用的靈活配置需求,通過性能型、均衡型、容量型、高密容量型四種機(jī)型的按需靈活配置,進(jìn)一步降低整體投入。

浪潮信息自研的源大模型

目前,浪潮信息生成式AI存儲(chǔ)解決方案已經(jīng)在全球領(lǐng)先的中文語言大模型"源1.0"中成功落地?!霸础敝形恼Z言大模型有近2500億個(gè)模型參數(shù),算力消耗達(dá)4000+PetaFlop/s-day,底層采用AS13000并行存儲(chǔ)支撐,原始數(shù)據(jù)、經(jīng)過粗篩和精篩的處理后得到高質(zhì)量中文數(shù)據(jù)都集中在AS13000上。

模型訓(xùn)練過程中對(duì)存儲(chǔ)的挑戰(zhàn)主要有對(duì)小文件并發(fā)的性能,和訓(xùn)練過程中要求快速保存Checkpoint存檔文件的高速寬寫入要求。AS13000采用最新硬件平臺(tái),搭載全閃SSD和高速IB網(wǎng)絡(luò)網(wǎng)絡(luò),支撐源的訓(xùn)練過程高效完成。

據(jù)測算, GPT-3使用10000塊GPU、花了30天訓(xùn)練完成1750億參數(shù),“源1.0”在2128個(gè)GPU集群上跑了16天完成了訓(xùn)練,源1.0的算力效率達(dá)到44.8%,遠(yuǎn)超MT-NLG與GPT-3等國際知名模型,其中存儲(chǔ)的極致性能功不可沒。

某AI獨(dú)角獸公司

該公司計(jì)劃發(fā)布5000億參數(shù)量的NLP語言類大模型,為了極致的提升計(jì)算效率,采用了計(jì)算網(wǎng)絡(luò)和存儲(chǔ)網(wǎng)絡(luò)分離的設(shè)計(jì),計(jì)算網(wǎng)絡(luò)采用高速IB、存儲(chǔ)網(wǎng)絡(luò)選擇了RoCE,并對(duì)于存儲(chǔ)提出了明確要求:不小于3.5PB的高速存儲(chǔ),性能要求帶寬300GB,IOPS 350萬以上。客戶從專業(yè)性、開發(fā)成本、周期及運(yùn)維等方面進(jìn)行全面評(píng)估后,選擇浪潮信息AS13000分布式全閃存儲(chǔ)集群,支持高性能RocE組網(wǎng)和GPU直通存儲(chǔ)功能,為算力集群提供高性能低延時(shí)的數(shù)據(jù)讀取保障。同時(shí)隨著業(yè)務(wù)的上線,進(jìn)行了兩次在線存儲(chǔ)擴(kuò)容,具有非常好的靈活性和容量性能線性擴(kuò)展能力。

隨著AIGC時(shí)代的到來,浪潮信息作為最早布局AIGC大模型的企業(yè)之一,持續(xù)圍繞“新存儲(chǔ)之道”的理念,持續(xù)打造平臺(tái)型存儲(chǔ)產(chǎn)品,應(yīng)對(duì)智能時(shí)代、AIGC時(shí)代的存儲(chǔ)挑戰(zhàn)。

本文轉(zhuǎn)載自公眾號(hào)大話存儲(chǔ)


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 存儲(chǔ)
    +關(guān)注

    關(guān)注

    13

    文章

    4527

    瀏覽量

    87347
  • 浪潮
    +關(guān)注

    關(guān)注

    1

    文章

    475

    瀏覽量

    24648
  • 生成式AI
    +關(guān)注

    關(guān)注

    0

    文章

    531

    瀏覽量

    782

原文標(biāo)題:存儲(chǔ)系統(tǒng)如何支持大模型生成式AI

文章出處:【微信號(hào):inspurstorage,微信公眾號(hào):浪潮存儲(chǔ)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    谷歌新一代生成AI媒體模型登陸Vertex AI平臺(tái)

    我們?cè)?Vertex AI 上推出新一代生成 AI 媒體模型: Imagen 4、Veo 3 和 Lyria 2。
    的頭像 發(fā)表于 06-18 09:56 ?308次閱讀

    兆芯+圖云創(chuàng)智—可信分布存儲(chǔ)系統(tǒng)解決方案

    圖云創(chuàng)智分布存儲(chǔ)系統(tǒng)采用全分布設(shè)計(jì)與先進(jìn)的存儲(chǔ)虛擬化技術(shù)相結(jié)合,由多個(gè)獨(dú)立的兆芯 x86 服務(wù)器作為存儲(chǔ)節(jié)點(diǎn),聯(lián)合道熵
    的頭像 發(fā)表于 04-23 10:29 ?201次閱讀
    兆芯+圖云創(chuàng)智—可信分布<b class='flag-5'>式</b><b class='flag-5'>存儲(chǔ)系統(tǒng)</b>解決方案

    聚云科技獲亞馬遜云科技生成AI能力認(rèn)證

    的應(yīng)用上展現(xiàn)出了卓越的能力。 聚云科技通過整合亞馬遜云科技的先進(jìn)技術(shù),從應(yīng)用范圍確定、模型選擇、數(shù)據(jù)處理、模型調(diào)優(yōu)到應(yīng)用集成與部署,為企業(yè)提供全方位的生成
    的頭像 發(fā)表于 02-19 10:33 ?463次閱讀

    聚云科技榮獲亞馬遜云科技生成AI能力認(rèn)證

    Bedrock等技術(shù),從應(yīng)用范圍、模型選擇、數(shù)據(jù)處理、模型調(diào)優(yōu)到應(yīng)用集成與部署等方面,助力企業(yè)加速生成AI應(yīng)用落地。此外,聚云科技還基于
    的頭像 發(fā)表于 02-14 16:07 ?377次閱讀

    聚云科技榮獲亞馬遜云科技生成AI能力認(rèn)證 助力企業(yè)加速生成AI應(yīng)用落地

    、數(shù)據(jù)處理、模型調(diào)優(yōu)到應(yīng)用集成與部署等方面,助力企業(yè)加速生成AI應(yīng)用落地。此外,聚云科技還基于亞馬遜云科技打造RAGPro企業(yè)知識(shí)庫、AI
    發(fā)表于 02-14 13:41 ?149次閱讀

    NVIDIA推出多個(gè)生成AI模型和藍(lán)圖

    NVIDIA 宣布推出多個(gè)生成 AI 模型和藍(lán)圖,將 NVIDIA Omniverse 一體化進(jìn)一步擴(kuò)展至物理 AI 應(yīng)用,如機(jī)器人、自動(dòng)
    的頭像 發(fā)表于 01-08 10:48 ?604次閱讀

    Google兩款先進(jìn)生成AI模型登陸Vertex AI平臺(tái)

    新的 AI 模型,包括最先進(jìn)的視頻生成模型Veo以及最高品質(zhì)的圖像生成模型Imagen 3。近日
    的頭像 發(fā)表于 12-30 09:56 ?600次閱讀

    AI存儲(chǔ)瓶頸破解之道,西部數(shù)據(jù)用前沿技術(shù)持續(xù)引領(lǐng)存儲(chǔ)革命

    當(dāng)前,人工智能已經(jīng)成為推動(dòng)企業(yè)創(chuàng)新和可持續(xù)發(fā)展的核心驅(qū)動(dòng)力。隨著生成AI時(shí)代的到來,各種大模型應(yīng)用層出不窮,人們?cè)陉P(guān)注算力和算法的同時(shí),構(gòu)建先進(jìn)的數(shù)據(jù)
    的頭像 發(fā)表于 11-30 08:27 ?661次閱讀

    NVIDIA推出全新生成AI模型Fugatto

    NVIDIA 開發(fā)了一個(gè)全新的生成 AI 模型。利用輸入的文本和音頻,該模型可以創(chuàng)作出包含任意的音樂、人聲和聲音組合的作品。
    的頭像 發(fā)表于 11-27 11:29 ?806次閱讀

    在設(shè)備上利用AI Edge Torch生成API部署自定義大語言模型

    MediaPipe LLM Inference API 讓開發(fā)者們能夠?qū)⒁恍┳钍軞g迎的 LLM 部署到設(shè)備上?,F(xiàn)在,我們很高興能進(jìn)一步拓展對(duì)模型支持范圍,并讓大家部署到設(shè)備,而且具備優(yōu)秀的性能表現(xiàn)。今天發(fā)布的 AI Edge
    的頭像 發(fā)表于 11-14 10:23 ?1078次閱讀
    在設(shè)備上利用<b class='flag-5'>AI</b> Edge Torch<b class='flag-5'>生成</b><b class='flag-5'>式</b>API部署自定義大語言<b class='flag-5'>模型</b>

    WDS分布存儲(chǔ)系統(tǒng)軟件助力電信工程海量數(shù)據(jù)存儲(chǔ)項(xiàng)目

    WDS分布存儲(chǔ)系統(tǒng)軟件助力電信工程海量數(shù)據(jù)存儲(chǔ)項(xiàng)目
    的頭像 發(fā)表于 11-11 09:59 ?490次閱讀
    WDS分布<b class='flag-5'>式</b><b class='flag-5'>存儲(chǔ)系統(tǒng)</b>軟件助力電信工程海量數(shù)據(jù)<b class='flag-5'>存儲(chǔ)</b>項(xiàng)目

    計(jì)算機(jī)存儲(chǔ)系統(tǒng)的構(gòu)成

    計(jì)算機(jī)存儲(chǔ)系統(tǒng)是計(jì)算機(jī)中用于存放程序和數(shù)據(jù)的設(shè)備或部件的集合,它構(gòu)成了計(jì)算機(jī)信息處理的基礎(chǔ)。一個(gè)完整的計(jì)算機(jī)存儲(chǔ)系統(tǒng)通常包括多個(gè)層次的存儲(chǔ)器,從高速緩存(Cache)到主存儲(chǔ)器(Mai
    的頭像 發(fā)表于 09-26 15:25 ?2502次閱讀

    基于分布存儲(chǔ)系統(tǒng)醫(yī)療影像數(shù)據(jù)存儲(chǔ)解決方案

    基于分布存儲(chǔ)系統(tǒng)醫(yī)療影像數(shù)據(jù)存儲(chǔ)解決方案
    的頭像 發(fā)表于 09-14 09:53 ?675次閱讀
    基于分布<b class='flag-5'>式</b><b class='flag-5'>存儲(chǔ)系統(tǒng)</b>醫(yī)療影像數(shù)據(jù)<b class='flag-5'>存儲(chǔ)</b>解決方案

    三行代碼完成生成AI部署

    OpenVINO2024.2版本跟之前版本最大的不同是OpenVINO2024.2分為兩個(gè)安裝包分別是基礎(chǔ)包與生成AI支持包,新發(fā)布的GenAI開發(fā)包
    的頭像 發(fā)表于 08-30 16:49 ?746次閱讀
    三行代碼完成<b class='flag-5'>生成</b><b class='flag-5'>式</b><b class='flag-5'>AI</b>部署

    NVIDIA AI Foundry 為全球企業(yè)打造自定義 Llama 3.1 生成 AI 模型

    Foundry 提供從數(shù)據(jù)策管、合成數(shù)據(jù)生成、微調(diào)、檢索、防護(hù)到評(píng)估的全方位生成 AI 模型服務(wù),以便部署自定義 Llama 3.1 N
    發(fā)表于 07-24 09:39 ?911次閱讀
    NVIDIA <b class='flag-5'>AI</b> Foundry 為全球企業(yè)打造自定義 Llama 3.1 <b class='flag-5'>生成</b><b class='flag-5'>式</b> <b class='flag-5'>AI</b> <b class='flag-5'>模型</b>
    主站蜘蛛池模板: 正宁县| 玉山县| 泰和县| 循化| 米脂县| 增城市| 长子县| 思南县| 工布江达县| 平遥县| 明水县| 游戏| 松桃| 饶河县| 九寨沟县| 安泽县| 远安县| 兴义市| 紫金县| 富民县| 丁青县| 贡嘎县| 聂荣县| 吉林市| 宽城| 汉源县| 天镇县| 鄯善县| 大庆市| 全州县| 昌黎县| 呼和浩特市| 福建省| 玉林市| 龙海市| 连云港市| 米泉市| 合江县| 胶州市| 潼关县| 犍为县|