電子發(fā)燒友網(wǎng)報道(文/李彎彎)邊緣AI芯片低功耗設(shè)計是其在移動設(shè)備、物聯(lián)網(wǎng)終端等資源受限場景中落地的關(guān)鍵。在物聯(lián)網(wǎng)、可穿戴設(shè)備、智能家居等對功耗敏感的應(yīng)用場景中,低功耗設(shè)計直接決定了設(shè)備的續(xù)航能力、部署成本及用戶體驗。
為什么邊緣AI芯片需要低功耗設(shè)計?
從應(yīng)用場景層面來看,首先是設(shè)備供電受限,如智能手表、無線傳感器、可穿戴設(shè)備等依賴電池供電,低功耗設(shè)計直接決定續(xù)航時間。在太陽能、射頻能量收集等自供電系統(tǒng)中,芯片功耗需低于能量收集速率,否則設(shè)備無法持續(xù)運(yùn)行。
其二是部署環(huán)境苛刻,在工業(yè)監(jiān)測、農(nóng)業(yè)物聯(lián)網(wǎng)等場景中,設(shè)備可能部署在難以更換電池或無法接線的區(qū)域。例如,橋梁結(jié)構(gòu)監(jiān)測傳感器需連續(xù)工作數(shù)年,功耗需低于1mW。功耗過高會導(dǎo)致芯片發(fā)熱,影響穩(wěn)定性與壽命。例如,在汽車電子中,芯片需滿足AEC-Q100標(biāo)準(zhǔn),低功耗設(shè)計可減少熱應(yīng)力導(dǎo)致的失效風(fēng)險。
從技術(shù)發(fā)展層面來看,首先,能效比(TOPS/W)是核心指標(biāo),邊緣AI芯片需在有限功耗下提供高算力。例如,特斯拉FSD芯片以72W功耗實(shí)現(xiàn)144TOPS算力,能效比達(dá)2TOPS/W,滿足自動駕駛實(shí)時性需求。低功耗設(shè)計可突破“功耗墻”限制。例如,傳統(tǒng)GPU在移動端因功耗過高(>20W)難以應(yīng)用,而專用邊緣AI芯片可將功耗壓縮至數(shù)百mW級。
其次,散熱與封裝成本約束,高功耗芯片需配備散熱片或風(fēng)扇,增加體積與成本。例如,桌面GPU功耗可達(dá)300W,需主動散熱;而邊緣設(shè)備芯片功耗需控制在5W以內(nèi),可采用被動散熱。低功耗設(shè)計可簡化封裝要求。例如,采用Chiplet技術(shù)的邊緣AI芯片通過2.5D封裝降低互連功耗,同時減少對散熱材料的需求。
邊緣AI芯片低功耗設(shè)計方法
從硬件架構(gòu)優(yōu)化角度來看,如專用加速器NPU、DPU等,設(shè)計針對AI運(yùn)算(如矩陣乘加)的專用電路,提升能效比。例如,Google TPU通過脈動陣列減少通用計算單元的冗余操作。如異構(gòu)計算架構(gòu),結(jié)合CPU(控制)、GPU(并行計算)、NPU(AI推理)等模塊,按任務(wù)類型動態(tài)分配計算負(fù)載。輕量級任務(wù)由CPU處理,復(fù)雜模型交由NPU,避免資源浪費(fèi)。
還有一些創(chuàng)新架構(gòu)設(shè)計方向,如存算一體化,減少數(shù)據(jù)搬運(yùn),在存儲單元附近直接完成計算,降低I/O功耗。技術(shù)路徑實(shí)現(xiàn)方面有存內(nèi)計算、近內(nèi)存計算。再如事件驅(qū)動架構(gòu),采用脈沖神經(jīng)網(wǎng)絡(luò)(SNN)或事件相機(jī)傳感器,僅在數(shù)據(jù)變化時觸發(fā)計算,減少靜態(tài)功耗。
從算法與模型優(yōu)化角度來看,如模型壓縮技術(shù),剪枝,移除冗余神經(jīng)元或權(quán)重(稀疏化),降低計算量;量化,將32位浮點(diǎn)模型轉(zhuǎn)為8位整數(shù),減少乘法器和內(nèi)存訪問能耗;知識蒸餾,用大模型訓(xùn)練輕量級學(xué)生模型,保持精度同時降低計算需求。
??
如輕量級網(wǎng)絡(luò)設(shè)計,使用MobileNet(深度可分離卷積)、EfficientNet(復(fù)合縮放)等結(jié)構(gòu),平衡精度與計算量。再如動態(tài)推理,在推理過程中設(shè)置檢查點(diǎn),若低層已足夠準(zhǔn)確,則提前終止計算。近似計算,允許非關(guān)鍵計算結(jié)果存在誤差,簡化運(yùn)算(如低精度浮點(diǎn)、舍入策略)。
從動態(tài)電源管理角度,DVFS(動態(tài)電壓頻率調(diào)節(jié)),根據(jù)負(fù)載實(shí)時調(diào)整電壓和頻率,例如在空閑時進(jìn)入低功耗模式(如C6睡眠狀態(tài))。多電源域劃分,將芯片劃分為多個電源域,按需開啟或關(guān)閉(如攝像頭模塊僅在檢測到運(yùn)動時供電)。自適應(yīng)功耗策略,結(jié)合負(fù)載預(yù)測(如LSTM預(yù)測任務(wù)周期),動態(tài)調(diào)整電源狀態(tài)。
還有軟件與系統(tǒng)協(xié)同方面,編譯器優(yōu)化,通過指令級并行(ILP)優(yōu)化、內(nèi)存訪問合并,減少計算周期和能耗。操作系統(tǒng)調(diào)度,任務(wù)級功耗管理,優(yōu)先調(diào)度低功耗核心處理簡單任務(wù),高負(fù)載時喚醒高性能核心。應(yīng)用層策略,喚醒詞檢測(如Alexa的Always-On模式),僅運(yùn)行輕量級模型,待檢測到關(guān)鍵詞后喚醒主模型。
小結(jié):邊緣AI芯片低功耗設(shè)計是其在真實(shí)場景中落地的必要條件,直接決定了設(shè)備的可用性、經(jīng)濟(jì)性和可持續(xù)性。通過硬件架構(gòu)、算法優(yōu)化、制程工藝等多維度協(xié)同,邊緣AI芯片得以在毫瓦級甚至微瓦級功耗下運(yùn)行,滿足電池供電、實(shí)時響應(yīng)、低成本部署等核心需求。
-
邊緣AI
+關(guān)注
關(guān)注
0文章
154瀏覽量
5417
發(fā)布評論請先 登錄
Nordic收購 Neuton.AI 關(guān)于產(chǎn)品技術(shù)的分析
RK3576 vs RK3588:為何越來越多的開發(fā)者轉(zhuǎn)向RK3576?
輕松上手邊緣AI:MemryX MX3+結(jié)合Orange Pi 5 Plus的C/C++實(shí)戰(zhàn)指南

6TOPS算力NPU加持!RK3588如何重塑8K顯示的邊緣計算新邊界
Banana Pi 發(fā)布 BPI-AI2N & BPI-AI2N Carrier,助力 AI 計算與嵌入式開發(fā)
炬芯科技ATS362X 低功耗大算力AI音頻芯片

FPGA+AI王炸組合如何重塑未來世界:看看DeepSeek東方神秘力量如何預(yù)測......
AI賦能邊緣網(wǎng)關(guān):開啟智能時代的新藍(lán)海
進(jìn)迭時空 K1 系列 8 核 64 位 RISC - V AI CPU 芯片介紹
低功耗SOC芯片的優(yōu)勢
Orin芯片功耗分析
聯(lián)發(fā)科天璣9400發(fā)布:能效比與端側(cè)AI引領(lǐng)移動芯片行業(yè)革新
科技新突破:首款支持多模態(tài)存算一體AI芯片成功問世

評論